Home
×

Scoria
Scoria

Mylonite
Mylonite



ADD
Compare
X
Scoria
X
Mylonite

Scoria vs Mylonite

Add ⊕
1 Definition
1.1 Definition
Scoria is a dark-colored extrusive igneous rock with abundant round bubble-like cavities
Mylonite is a metamorphic rock formed by ductile deformation during intense shearing encountered during folding and faulting, a process termed cataclastic or dynamic metamorphism
1.2 History
1.2.1 Origin
Unknown
New Zealand
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From late Middle English (denoting slag from molten metal), from Greek skōria refuse, from skōr dung
From Greek mulōn mill + -ite
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Vesicular
Foliated
2.2 Color
Black, Brown, Dark Grey to Black, Red
Black to Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Glassy and Vesicular
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Construction Aggregate, for Road Aggregate, In landscaping and drainage works
for Road Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
As a traction material on snow-covered roads, Creating Artwork, High-temperature insulation, In gas barbecue grills
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Not Available
Blastomylonites, Ultramylonites and Phyllonites
4.2 Features
Available in Lots of Colors and Patterns, Generally rough to touch, Surfaces are often shiny
Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Scoria forms when magma containing huge amount of dissolved gas flows from a volcano during an eruption.
Mylonites are ductilely deformed rocks formed by the accumulation of large shear strain, in ductile fault zones.
5.2 Composition
5.2.1 Mineral Content
Apatite, Biotite, Calcite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz, Silica
Porphyroblasts
5.2.2 Compound Content
Ca, NaCl
Aluminium Oxide, Calcium Sulfate, Chromium(III) Oxide, Iron(III) Oxide, Magnesium Carbonate, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Sea Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-6
3-4
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Shiny
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
1.28 N/mm2
Rank: 32 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Conchoidal
6.1.9 Toughness
2.1
Not Available
6.1.10 Specific Gravity
Not Available
2.97-3.05
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not Available
2.6-4.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
1.50 kJ/Kg K
Rank: 3 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Indonesia, Japan, Russia
China, India, Indonesia, Saudi Arabia, South Korea
7.1.2 Africa
Ethiopia, Kenya, Tanzania
Eritrea, Ethiopia, Ghana, South Africa, Western Africa
7.1.3 Europe
Greece, Hungary, Iceland, Italy, Turkey
England, Finland, France, Germany, Great Britain, Greece, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Bahamas, Barbados, Canada, Costa Rica, Cuba, Jamaica, Mexico, USA
USA
7.2.2 South America
Argentina, Chile, Ecuador, Peru
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Central Australia, Western Australia

Scoria vs Mylonite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Scoria and Mylonite Reserves. Scoria is a dark-colored extrusive igneous rock with abundant round bubble-like cavities. Mylonite is a metamorphic rock formed by ductile deformation during intense shearing encountered during folding and faulting, a process termed cataclastic or dynamic metamorphism. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Scoria vs Mylonite information and Scoria vs Mylonite characteristics in the upcoming sections.

Scoria vs Mylonite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Scoria vs Mylonite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Scoria and Properties of Mylonite. Learn more about Scoria vs Mylonite in the next section. The interior uses of Scoria include Decorative aggregates and Interior decoration whereas the interior uses of Mylonite include Decorative aggregates and Interior decoration. Due to some exceptional properties of Scoria and Mylonite, they have various applications in construction industry. The uses of Scoria in construction industry include Cement manufacture, Construction aggregate, For road aggregate, In landscaping and drainage works and that of Mylonite include For road aggregate, Landscaping, Roadstone.

More about Scoria and Mylonite

Here you can know more about Scoria and Mylonite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Scoria and Mylonite consists of mineral content and compound content. The mineral content of Scoria includes Apatite, Biotite, Calcite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz, Silica and mineral content of Mylonite includes Porphyroblasts. You can also check out the list of all Igneous Rocks. When we have to compare Scoria vs Mylonite, the texture, color and appearance plays an important role in determining the type of rock. Scoria is available in black, brown, dark grey to black, red colors whereas, Mylonite is available in black to grey colors. Appearance of Scoria is Glassy and Vesicular and that of Mylonite is Dull, Banded and Foilated. Properties of rock is another aspect for Scoria vs Mylonite. The hardness of Scoria is 5-6 and that of Mylonite is 3-4. The types of Scoria are Not Available whereas types of Mylonite are Blastomylonites, Ultramylonites and Phyllonites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Scoria and Mylonite is white. The specific heat capacity of Scoria is Not Available and that of Mylonite is 1.50 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Scoria is heat resistant, impact resistant, pressure resistant, wear resistant whereas Mylonite is heat resistant, impact resistant, pressure resistant.