Home
×

Rhomb Porphyry
Rhomb Porphyry

Anorthosite
Anorthosite



ADD
Compare
X
Rhomb Porphyry
X
Anorthosite

Rhomb Porphyry vs Anorthosite

1 Definition
1.1 Definition
Rhomb-porphyry is a porphyritic igneous rock with abundant wedge or lens shaped anorthoclase or feldspar phenocrysts
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Latin term that means purple
From French anorthose plagioclase + -ite1
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Foliated, Glassy
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Cement Manufacture, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
Creating Artwork, Curling
4 Types
4.1 Types
Not Available
Proterozoic Anorthosite and Archean Anorthosite
4.2 Features
Host Rock for Lead
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Rhomb-porphyry is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Plagioclase, Pyroxene
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
5.2.2 Compound Content
CaO, Cl, MgO
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Impact Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion
Chemical Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.5
5-6
6.1.2 Grain Size
Fine Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Pearly to Subvitreous
6.1.7 Compressive Strength
Flint
310.00 N/mm2
Rank: 2 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Irregular
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.86
2.62-2.82
6.1.11 Transparency
Translucent
Translucent
6.1.12 Density
2.8-2.9 g/cm3
2.7-4 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Not Yet Found
7.1.2 Africa
Not Yet Found
Not Yet Found
7.1.3 Europe
Bulgaria
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada
7.2.2 South America
Not Yet Found
Bolivia, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Central Australia, South Australia, Western Australia

Rhomb Porphyry vs Anorthosite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Rhomb Porphyry and Anorthosite Reserves. Rhomb-porphyry is a porphyritic igneous rock with abundant wedge or lens shaped anorthoclase or feldspar phenocrysts. Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Rhomb Porphyry vs Anorthosite information and Rhomb Porphyry vs Anorthosite characteristics in the upcoming sections.

Rhomb Porphyry vs Anorthosite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Rhomb Porphyry vs Anorthosite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Rhomb Porphyry and Properties of Anorthosite. Learn more about Rhomb Porphyry vs Anorthosite in the next section. The interior uses of Rhomb Porphyry include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Anorthosite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Rhomb Porphyry and Anorthosite, they have various applications in construction industry. The uses of Rhomb Porphyry in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Anorthosite include As dimension stone, Cement manufacture, For road aggregate.

More about Rhomb Porphyry and Anorthosite

Here you can know more about Rhomb Porphyry and Anorthosite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Rhomb Porphyry and Anorthosite consists of mineral content and compound content. The mineral content of Rhomb Porphyry includes Alkali feldspar, Biotite, Plagioclase, Pyroxene and mineral content of Anorthosite includes Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Rhomb Porphyry vs Anorthosite, the texture, color and appearance plays an important role in determining the type of rock. Rhomb Porphyry is available in black, brown, colourless, green, grey, pink, white colors whereas, Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors. Appearance of Rhomb Porphyry is Rough and that of Anorthosite is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Rhomb Porphyry vs Anorthosite. The hardness of Rhomb Porphyry is 5-5.5 and that of Anorthosite is 5-6. The types of Rhomb Porphyry are Not Available whereas types of Anorthosite are Proterozoic Anorthosite and Archean Anorthosite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Rhomb Porphyry and Anorthosite is white. The specific heat capacity of Rhomb Porphyry is 0.92 kJ/Kg K and that of Anorthosite is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Rhomb Porphyry is heat resistant, pressure resistant whereas Anorthosite is heat resistant, impact resistant, pressure resistant, scratch resistant, wear resistant.