Home
Compare Rocks


Quartzite vs Kimberlite


Kimberlite vs Quartzite


Definition

Definition
Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone   
Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.   

History
  
  

Origin
Unknown   
Kimberley, South Africa   

Discoverer
Unknown   
Unknown   

Etymology
From quartz + -ite   
From Kimberley +‎ -ite, from the name of the South African town of Kimberley where the rock was first found.   

Class
Metamorphic Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Hard Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Not Applicable   
Volcanic   

Other Categories
Medium Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Opaque Rock   

Texture

Texture
Foliated, Granular   
Porphyritic   

Color
Black, Blue, Brown, Green, Light Grey, Purple, White, Yellow   
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
Yes   

Wind Resistant
Yes   
Yes   

Acid Resistant
Yes   
Yes   

Appearance
Lustrous   
Dull and Banded   

Uses

Architecture
  
  

Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes   
Countertops, Decorative Aggregates, Homes, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   
As Building Stone, Paving Stone, Garden Decoration   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
Arrowheads, As Dimension Stone, Cement Manufacture, Construction Aggregate, Cutting Tool, for Road Aggregate, Making natural cement, Production of Glass and Ceramics, Rail Track Ballast, Roadstone   
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   

Medical Industry
Not Yet Used   
Taken as a Supplement for Calcium or Magnesium   

Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture   
Artifacts, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
An Oil and Gas Reservoir, As armour rock for sea walls, Cemetery Markers, Commemorative Tablets, In aquifers, Laboratory bench tops, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones, Used in aquariums   
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   

Types

Types
Not Available   
Basaltic Kimberlites and Micaceous Kimberlites   

Features
Generally rough to touch, Is one of the oldest rock   
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Not Used   
Not Used   

Petroglyphs
Not Used   
Not Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Quartzite forms from sandstone and the mineral quartz being put under extreme heat and pressure.   
Kimberlite is an igneous rock and is the main source of diamonds. Its formation takes place deep beneath the Earth’s surface between 150 to 450 kilometres, and are erupted rapidly and violently.   

Composition
  
  

Mineral Content
Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz   
Garnet, Olivine, Phlogopite, Pyroxene   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, MgO, Sodium Oxide, Silicon Dioxide   
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Regional Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion   
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
6-7   
6-7   

Grain Size
Medium Grained   
Fine to Coarse Grained   

Fracture
Uneven, Splintery or Conchoidal   
Conchoidal   

Streak
White   
White   

Porosity
Less Porous   
Very Less Porous   

Luster
Vitreous   
Subvitreous to Dull   

Compressive Strength
115.00 N/mm2   
18
Not Available   

Cleavage
Indiscernible   
Conchoidal   

Toughness
1.9   
Not Available   

Specific Gravity
2.6-2.8   
2.86-2.87   

Transparency
Transparent to Translucent   
Translucent to Opaque   

Density
2.32-2.42 g/cm3   
2.95-2.96 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.75 kJ/Kg K   
18
0.92 kJ/Kg K   
10

Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant   
Heat Resistant, Impact Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Israel, Russia, South Korea, Thailand, Turkey   
Russia   

Africa
Ethiopia, Morocco, South Africa, Zimbabwe   
Angola, Botswana, Cameroon, Ethiopia, South Africa   

Europe
England, Italy, Norway, Scotland, Sweden, United Kingdom   
England, Hungary, Iceland, United Kingdom   

Others
Greenland   
Antarctica   

Deposits in Western Continents
  
  

North America
Bahamas, Canada, USA   
Canada, USA   

South America
Brazil, Colombia, Venezuela   
Argentina, Colombia, Ecuador   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, Western Australia   
New South Wales, New Zealand, South Australia, Western Australia   

Definition >>
<< All

Quartzite vs Kimberlite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Quartzite and Kimberlite Reserves. Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone. Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Quartzite vs Kimberlite information and Quartzite vs Kimberlite characteristics in the upcoming sections.

Compare Metamorphic Rocks

Quartzite vs Kimberlite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Quartzite vs Kimberlite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Quartzite and Properties of Kimberlite. Learn more about Quartzite vs Kimberlite in the next section. The interior uses of Quartzite include Countertops, Decorative aggregates, Flooring and Homes whereas the interior uses of Kimberlite include Countertops, Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Quartzite and Kimberlite, they have various applications in construction industry. The uses of Quartzite in construction industry include Arrowheads, As dimension stone, Cement manufacture, Construction aggregate, Cutting tool, For road aggregate, Making natural cement, Production of glass and ceramics, Rail track ballast, Roadstone and that of Kimberlite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Quartzite and Kimberlite

Here you can know more about Quartzite and Kimberlite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Quartzite and Kimberlite consists of mineral content and compound content. The mineral content of Quartzite includes Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz and mineral content of Kimberlite includes Garnet, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Metamorphic Rocks. When we have to compare Quartzite vs Kimberlite, the texture, color and appearance plays an important role in determining the type of rock. Quartzite is available in black, blue, brown, green, light grey, purple, white, yellow colors whereas, Kimberlite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Quartzite is Lustrous and that of Kimberlite is Dull and Banded. Properties of rock is another aspect for Quartzite vs Kimberlite. Hardness of Quartzite and Kimberlite is 6-7. The types of Quartzite are Not Available whereas types of Kimberlite are Basaltic Kimberlites and Micaceous Kimberlites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Quartzite and Kimberlite is white. The specific heat capacity of Quartzite is 0.75 kJ/Kg K and that of Kimberlite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Quartzite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Kimberlite is heat resistant, impact resistant.

Metamorphic Rocks

Metamorphic Rocks

» More Metamorphic Rocks

Compare Metamorphic Rocks

» More Compare Metamorphic Rocks