Home
×

Pyroxenite
Pyroxenite

Dacite
Dacite



ADD
Compare
X
Pyroxenite
X
Dacite

Pyroxenite and Dacite

Add ⊕
1 Definition
1.1 Definition
Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine
Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite
1.2 History
1.2.1 Origin
Unknown
Romania and Moldova, Europe
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From pyro- fire + Greek xenos stranger as the mineral group was new to igneous rocks
From Dacia, a province of the Roman Empire which lay between the Danube River and Carpathian Mountains where the rock was first described
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic, Granular, Phaneritic, Porphyritic
Aphanitic to Porphyritic
2.2 Color
Black to Grey, Bluish - Grey, Dark Greenish - Grey, Green, Light Greenish Grey
Bluish - Grey, Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Interior Decoration, Kitchens
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone
As Building Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
As Dimension Stone, Construction Aggregate, for Road Aggregate, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Clinopyroxenites, Orthopyroxenites and Websterites
Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite
4.2 Features
Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Host Rock for Lead, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Pyroxenites are ultramafic igneous rocks which are made up of minerals of the pyroxene group, such as augite and diopside, hypersthene, bronzite or enstatite.
Dacitic magma is formed by the subduction of young oceanic crust under a thick felsic continental plate. Further, the Oceanic crust is hydrothermally altered as quartz and sodium are added.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Ca, Fe, Potassium Oxide, Mg, Potassium, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
2-2.25
6.1.2 Grain Size
Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
White, Greenish White or Grey
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Dull to Vitreous to Submetallic
Subvitreous to Dull
6.1.7 Compressive Strength
What Is Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Perfect
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
3.2-3.5
2.86-2.87
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
3.1-3.6 g/cm3
2.77-2.771 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Not Yet Found
7.1.2 Africa
South Africa
Not Yet Found
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
France, Greece, Romania, Scotland, Spain
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil, Colombia, Venezuela
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland
New Zealand, South Australia, Western Australia

All about Pyroxenite and Dacite Properties

Know all about Pyroxenite and Dacite properties here. All properties of rocks are important as they define the type of rock and its application. Pyroxenite and Dacite belong to Igneous Rocks.Texture of Pyroxenite is Clastic, Granular, Phaneritic, Porphyritic whereas that of Dacite is Aphanitic to Porphyritic. Pyroxenite appears Layered, Banded, Veined and Shiny and Dacite appears Vesicular. The luster of Pyroxenite is dull to vitreous to submetallic while that of Dacite is subvitreous to dull. Pyroxenite is available in black to grey, bluish - grey, dark greenish - grey, green, light greenish grey colors whereas Dacite is available in bluish - grey, brown, grey, light to dark grey colors. The commercial uses of Pyroxenite are cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones and that of Dacite are commemorative tablets, creating artwork.