×

Pumice
Pumice

Migmatite
Migmatite



ADD
Compare
X
Pumice
X
Migmatite

Pumice and Migmatite

Add ⊕
1 Definition
1.1 Definition
Pumice is a volcanic rock that consists of highly vesicular rough textured volcanic glass, which may or may not contain crystals
Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components
1.2 History
1.2.1 Origin
Spain
Southern Alps, France
1.2.2 Discoverer
Unknown
Jakob Sederholm
1.3 Etymology
From Old French pomis, from a Latin dialect variant of pumex
From the Greek word migma which means a mixture
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Vesicular
Foliated
2.2 Color
Beige, Colourless, Grey, Light Green, Light Grey, Pink, White, Yellow- grey
Black, Bluish - Grey, Brown, Brown- Black, Dark Greenish - Grey, Dark Grey to Black
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Vesicular
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration
Countertops, Flooring, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone
3.1.3 Other Architectural Uses
Curbing, Powder
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, In landscaping and horticulture, Making natural cement, Production of lightweight concrete blocks
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
3.2.2 Medical Industry
As an abrasive in skin exfoliating products, In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
As a traction material on snow-covered roads, As an abrasive in pencil erasers, Fine abrasive used for polishing, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Used in aquariums
Cemetery Markers, Jewelry, Tombstones, Used to manufracture paperweights and bookends
4 Types
4.1 Types
Scoria
Diatexites and Metatexites
4.2 Features
Host Rock for Lead
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Pumice rock forms when the magma cools so quickly that atoms in the melt are not able to arrange themselves into a crystalline structure.
Migmatites form by high temperature regional and thermal metamorphism of protolith rocks where rocks melt partially due to high temperature.
5.2 Composition
5.2.1 Mineral Content
Aluminum Oxides, Calcite, Carbonate, Iron Oxides, Silica
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
5.2.2 Compound Content
Al, Aluminium Oxide, CaO, Carbon Dioxide, MgO, Silicon Dioxide
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
65.5-6.5
Coal
1 7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Planar
Irregular
6.1.4 Streak
White, Greenish White or Grey
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Earthy
Dull to Pearly to Subvitreous
6.1.7 Compressive Strength
51.20 N/mm2NA
What Is Obsidian
0.15 450
6.1.8 Cleavage
Perfect
Poor
6.1.9 Toughness
3
1.2
6.1.10 Specific Gravity
2.862.65-2.75
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
0.25-0.3 g/cm3Not Available
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.87 kJ/Kg KNA
What Is Granulite
0.14 3.2
6.2.2 Resistance
Impact Resistant, Pressure Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Indonesia, Japan, Russia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
7.1.2 Africa
Ethiopia, Kenya, Tanzania
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
7.1.3 Europe
Greece, Hungary, Iceland, Italy, Turkey
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Sweden, Switzerland, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Bahamas, Barbados, Canada, Costa Rica, Cuba, Jamaica, Mexico, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Argentina, Chile, Ecuador, Peru
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New South Wales, New Zealand, Queensland, Victoria

All about Pumice and Migmatite Properties

Know all about Pumice and Migmatite properties here. All properties of rocks are important as they define the type of rock and its application. Pumice belongs to Igneous Rocks while Migmatite belongs to Metamorphic Rocks.Texture of Pumice is Vesicular whereas that of Migmatite is Foliated. Pumice appears Vesicular and Migmatite appears Dull, Banded and Foilated. The luster of Pumice is earthy while that of Migmatite is dull to pearly to subvitreous. Pumice is available in beige, colourless, grey, light green, light grey, pink, white, yellow- grey colors whereas Migmatite is available in black, bluish - grey, brown, brown- black, dark greenish - grey, dark grey to black colors. The commercial uses of Pumice are as a traction material on snow-covered roads, as an abrasive in pencil erasers, fine abrasive used for polishing, manufacture of soap, solvents, dyes, plastics and fibres, used in aquariums and that of Migmatite are cemetery markers, jewelry, tombstones, used to manufracture paperweights and bookends.