Home
×

Pseudotachylite
Pseudotachylite

Lamprophyre
Lamprophyre



ADD
Compare
X
Pseudotachylite
X
Lamprophyre

Pseudotachylite vs Lamprophyre

1 Definition
1.1 Definition
Very fine grained fault rock which is composed of glassy matrix that often contains inclusions of wall-rock fragments.
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions
1.2 History
1.2.1 Origin
USA
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From pseudo- +‎ tachylite, a glassy rock generated by frictional heat within faults.
From Greek lampros bright and shining + porphureos purple
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Quench
Porphyritic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite
4.2 Features
Host Rock for Lead
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Pseudotachylite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Iron Oxides, Pyroxene, Quartz, Stishovite, Sulfides
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Carbon Dioxide, Silicon Dioxide, Sulfur Dioxide, Sulphur
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Cataclastic Metamorphism, Impact Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
5-6
6.1.2 Grain Size
Very fine-grained
Fine to Coarse Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
Light to dark brown
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Vitreous
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
60.00 N/mm2
Rank: 25 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Conchoidal
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.46-2.86
2.86-2.87
6.1.11 Transparency
Transparent to Translucent
Translucent to Opaque
6.1.12 Density
2.7-2.9 g/cm3
2.95-2.96 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
South Korea
Russia
7.1.2 Africa
Western Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
Great Britain, Switzerland
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Not Yet Found
Canada, Mexico, USA
7.2.2 South America
Not Yet Found
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia

Pseudotachylite vs Lamprophyre Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Pseudotachylite and Lamprophyre Reserves. Very fine grained fault rock which is composed of glassy matrix that often contains inclusions of wall-rock fragments.. Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Pseudotachylite vs Lamprophyre information and Pseudotachylite vs Lamprophyre characteristics in the upcoming sections.

Pseudotachylite vs Lamprophyre Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Pseudotachylite vs Lamprophyre characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Pseudotachylite and Properties of Lamprophyre. Learn more about Pseudotachylite vs Lamprophyre in the next section. The interior uses of Pseudotachylite include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Lamprophyre include Decorative aggregates and Interior decoration. Due to some exceptional properties of Pseudotachylite and Lamprophyre, they have various applications in construction industry. The uses of Pseudotachylite in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement and that of Lamprophyre include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Pseudotachylite and Lamprophyre

Here you can know more about Pseudotachylite and Lamprophyre. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Pseudotachylite and Lamprophyre consists of mineral content and compound content. The mineral content of Pseudotachylite includes Iron Oxides, Pyroxene, Quartz, Stishovite, Sulfides and mineral content of Lamprophyre includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Metamorphic Rocks. When we have to compare Pseudotachylite vs Lamprophyre, the texture, color and appearance plays an important role in determining the type of rock. Pseudotachylite is available in black, brown, colourless, green, grey, pink, white colors whereas, Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Pseudotachylite is Dull and Soft and that of Lamprophyre is Dull, Banded and Foilated. Properties of rock is another aspect for Pseudotachylite vs Lamprophyre. The hardness of Pseudotachylite is 7 and that of Lamprophyre is 5-6. The types of Pseudotachylite are Not Available whereas types of Lamprophyre are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Pseudotachylite is light to dark brown while that of Lamprophyre is white. The specific heat capacity of Pseudotachylite is 0.92 kJ/Kg K and that of Lamprophyre is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Pseudotachylite is heat resistant whereas Lamprophyre is heat resistant, impact resistant.