Home
×

Picrite
Picrite

Trondhjemite
Trondhjemite



ADD
Compare
X
Picrite
X
Trondhjemite

Picrite vs Trondhjemite

1 Definition
1.1 Definition
Picrite is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine
Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.
1.2 History
1.2.1 Origin
Hawaii Islands
Tonale, Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek pikros bitter + -ite, 19th century
Not Available
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy, Rough
Phaneritic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White, Yellow
Black, Brown, Light to Dark Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough and Shiny
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Sintering Agent in Steel Industry to process Iron Ore, Cement Manufacture, for Road Aggregate, Manufacture of Magnesium and Dolomite Refractories, Roadstone, Used for flooring, stair treads, borders and window sills.
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
As a Feed Additive for Livestock, As armour rock for sea walls, Metallurgical Flux, Pottery, Source of Magnesia (MgO)
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Oceanite
Not Available
4.2 Features
Host Rock for Lead
Is one of the oldest rock, Typically speckled black and white.
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Picrite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
When alkali feldspar is extracted from granite, it changes to granitoid and later, it becomes trondhjemite with quartz as major mineral.
5.2 Composition
5.2.1 Mineral Content
Biotite, Olivine, Plagioclase, Pyrrhotite
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
5.2.2 Compound Content
Al, CaO, Carbon Dioxide, Mg, MgO
NaCl, CaO, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.8
6-7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
White, Greenish White or Grey
Bluish Black
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Subvitreous to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
189.00 N/mm2
Rank: 11 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Not Available
6.1.9 Toughness
2.1
2.1
6.1.10 Specific Gravity
2.75-2.92
2.86-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
1.5-2.5 g/cm3
2.73 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.88 kJ/Kg K
Rank: 13 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Not Yet Found
7.1.2 Africa
South Africa
Egypt
7.1.3 Europe
Iceland
Finland, Germany, Italy, Romania, Sweden, Turkey
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, South Australia, Western Australia

Picrite vs Trondhjemite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Picrite and Trondhjemite Reserves. Picrite is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine. Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Picrite vs Trondhjemite information and Picrite vs Trondhjemite characteristics in the upcoming sections.

Picrite vs Trondhjemite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Picrite vs Trondhjemite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Picrite and Properties of Trondhjemite. Learn more about Picrite vs Trondhjemite in the next section. The interior uses of Picrite include Countertops, Decorative aggregates, Homes and Interior decoration whereas the interior uses of Trondhjemite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Picrite and Trondhjemite, they have various applications in construction industry. The uses of Picrite in construction industry include As a sintering agent in steel industry to process iron ore, Cement manufacture, For road aggregate, Manufacture of magnesium and dolomite refractories, Roadstone, Used for flooring, stair treads, borders and window sills. and that of Trondhjemite include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate.

More about Picrite and Trondhjemite

Here you can know more about Picrite and Trondhjemite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Picrite and Trondhjemite consists of mineral content and compound content. The mineral content of Picrite includes Biotite, Olivine, Plagioclase, Pyrrhotite and mineral content of Trondhjemite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Picrite vs Trondhjemite, the texture, color and appearance plays an important role in determining the type of rock. Picrite is available in black, brown, colourless, green, grey, pink, white, yellow colors whereas, Trondhjemite is available in black, brown, light to dark grey, white colors. Appearance of Picrite is Rough and Shiny and that of Trondhjemite is Banded and Foilated. Properties of rock is another aspect for Picrite vs Trondhjemite. The hardness of Picrite is 6.8 and that of Trondhjemite is 6-7. The types of Picrite are Oceanite whereas types of Trondhjemite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Picrite is white, greenish white or grey while that of Trondhjemite is bluish black. The specific heat capacity of Picrite is 0.88 kJ/Kg K and that of Trondhjemite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Picrite is heat resistant whereas Trondhjemite is heat resistant, pressure resistant, wear resistant.