Home
×

Picrite
Picrite

Novaculite
Novaculite



ADD
Compare
X
Picrite
X
Novaculite

Picrite vs Novaculite

1 Definition
1.1 Definition
Picrite is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine
Novaculite is a dense, hard, fine-grained, siliceous metamorpic rock which is a type of chert that breaks with conchoidal fracture
1.2 History
1.2.1 Origin
Hawaii Islands
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek pikros bitter + -ite, 19th century
From Latin word novacula, for razor stone
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy, Rough
Banded, Glassy, Rough, Vitreous
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White, Yellow
Black, Brown, Green, Grey, Red, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Rough and Shiny
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration
Countertops, Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Sintering Agent in Steel Industry to process Iron Ore, Cement Manufacture, for Road Aggregate, Manufacture of Magnesium and Dolomite Refractories, Roadstone, Used for flooring, stair treads, borders and window sills.
Arrowheads, Building houses or walls, Cement Manufacture, Construction Aggregate, Cutting Tool, for Road Aggregate, Knives, Landscaping, Making natural cement, Production of Glass and Ceramics, Rail Track Ballast, Roadstone, Spear Points, Used to sharpen metal tools and weapons
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
As a Feed Additive for Livestock, As armour rock for sea walls, Metallurgical Flux, Pottery, Source of Magnesia (MgO)
Cemetery Markers, Gemstone, In aquifers, In fire-starting tools, Jewelry, Manufacture of tools, Pebbles are used in ball mills to grind in ceramics industry, To determine the gold content of jewelry
4 Types
4.1 Types
Oceanite
Not Available
4.2 Features
Host Rock for Lead
Clasts are smooth to touch, Easily splits into thin plates, Has High structural resistance against erosion and climate
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Picrite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Novaculite forms when microcrystals of silicon dioxide grow within soft sediments that become limestone or chalk. The formation of Novaculite can be either of chemical or biological origin.
5.2 Composition
5.2.1 Mineral Content
Biotite, Olivine, Plagioclase, Pyrrhotite
Quartz, Silicon
5.2.2 Compound Content
Al, CaO, Carbon Dioxide, Mg, MgO
Ca, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.8
7
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
White, Greenish White or Grey
Colorless
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Waxy and Dull
6.1.7 Compressive Strength
Flint
189.00 N/mm2
Rank: 11 (Overall)
450.00 N/mm2
Rank: 1 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Non-Existent
6.1.9 Toughness
2.1
1.5
6.1.10 Specific Gravity
2.75-2.92
2.5-2.7
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1.5-2.5 g/cm3
2.7 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.88 kJ/Kg K
Rank: 13 (Overall)
0.74 kJ/Kg K
Rank: 19 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
China, India, Iran, Japan, Oman, Russia, Saudi Arabia, Taiwan, Thailand, Vietnam
7.1.2 Africa
South Africa
Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Iceland
Austria, France, Greece, Italy, Malta, Poland, Portugal, Serbia, Spain, Sweden, United Kingdom
7.1.4 Others
Not Yet Found
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil
Bolivia, Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, Queensland, South Australia, Western Australia

Picrite vs Novaculite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Picrite and Novaculite Reserves. Picrite is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine. Novaculite is a dense, hard, fine-grained, siliceous metamorpic rock which is a type of chert that breaks with conchoidal fracture. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Picrite vs Novaculite information and Picrite vs Novaculite characteristics in the upcoming sections.

Picrite vs Novaculite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Picrite vs Novaculite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Picrite and Properties of Novaculite. Learn more about Picrite vs Novaculite in the next section. The interior uses of Picrite include Countertops, Decorative aggregates, Homes and Interior decoration whereas the interior uses of Novaculite include Countertops, Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Picrite and Novaculite, they have various applications in construction industry. The uses of Picrite in construction industry include As a sintering agent in steel industry to process iron ore, Cement manufacture, For road aggregate, Manufacture of magnesium and dolomite refractories, Roadstone, Used for flooring, stair treads, borders and window sills. and that of Novaculite include Arrowheads, Building houses or walls, Cement manufacture, Construction aggregate, Cutting tool, For road aggregate, Knives, Landscaping, Making natural cement, Production of glass and ceramics, Rail track ballast, Roadstone, Spear points, Used to sharpen metal tools and weapons.

More about Picrite and Novaculite

Here you can know more about Picrite and Novaculite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Picrite and Novaculite consists of mineral content and compound content. The mineral content of Picrite includes Biotite, Olivine, Plagioclase, Pyrrhotite and mineral content of Novaculite includes Quartz, Silicon. You can also check out the list of all Igneous Rocks. When we have to compare Picrite vs Novaculite, the texture, color and appearance plays an important role in determining the type of rock. Picrite is available in black, brown, colourless, green, grey, pink, white, yellow colors whereas, Novaculite is available in black, brown, green, grey, red, white colors. Appearance of Picrite is Rough and Shiny and that of Novaculite is Glassy or Pearly. Properties of rock is another aspect for Picrite vs Novaculite. The hardness of Picrite is 6.8 and that of Novaculite is 7. The types of Picrite are Oceanite whereas types of Novaculite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Picrite is white, greenish white or grey while that of Novaculite is colorless. The specific heat capacity of Picrite is 0.88 kJ/Kg K and that of Novaculite is 0.74 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Picrite is heat resistant whereas Novaculite is heat resistant, impact resistant, pressure resistant, wear resistant.