Definition
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
  
Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix
  
History
  
  
Origin
Unknown
  
Scotland
  
Discoverer
Unknown
  
Unknown
  
Etymology
From Greek phullon leaf + -ite1
  
From Alkalic Igneous complex near Loch Borralan in northwest Scotland
  
Class
Metamorphic Rocks
  
Igneous Rocks
  
Sub-Class
Durable Rock, Soft Rock
  
Durable Rock, Medium Hardness Rock
  
Family
  
  
Group
Not Applicable
  
Plutonic
  
Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
  
Fine Grained Rock, Opaque Rock
  
Texture
Phyllitic Sheen, Slaty
  
Granular
  
Color
Black to Grey, Light Greenish Grey
  
Brown, Buff, Cream, Green, Grey, Pink, White
  
Maintenance
More
  
Less
  
Durability
Durable
  
Durable
  
Water Resistant
No
  
Yes
  
Scratch Resistant
No
  
No
  
Stain Resistant
No
  
No
  
Wind Resistant
No
  
Yes
  
Acid Resistant
No
  
Yes
  
Appearance
Crinkled or Wavy
  
Banded and Foilated
  
Architecture
  
  
Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
  
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration
  
Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
  
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
  
Other Architectural Uses
Curbing
  
Curbing
  
Industry
  
  
Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
  
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
  
Medical Industry
Not Yet Used
  
Not Yet Used
  
Antiquity Uses
Artifacts, Sculpture
  
Artifacts
  
Other Uses
  
  
Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
  
Cemetery Markers
  
Types
Not Available
  
Not Available
  
Features
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
  
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
  
Archaeological Significance
  
  
Monuments
Not Yet Used
  
Used
  
Famous Monuments
Not Applicable
  
Data Not Available
  
Sculpture
Used
  
Used
  
Famous Sculptures
Data Not Available
  
Data Not Available
  
Pictographs
Used
  
Used
  
Petroglyphs
Used
  
Used
  
Figurines
Used
  
Used
  
Fossils
Absent
  
Absent
  
Formation
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
  
Borolanites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
  
Composition
  
  
Mineral Content
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
  
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
  
Compound Content
CaO, Carbon Dioxide, MgO
  
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
  
Transformation
  
  
Metamorphism
No
  
Yes
  
Types of Metamorphism
Not Applicable
  
Regional Metamorphism
  
Weathering
Yes
  
Yes
  
Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
  
Chemical Weathering, Mechanical Weathering
  
Erosion
Yes
  
Yes
  
Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
  
Wind Erosion
  
Physical Properties
  
  
Hardness
1-2
  
5.5-6
  
Grain Size
Medium to Fine Coarse Grained
  
Fine Grained
  
Fracture
Conchoidal
  
Conchoidal to Uneven
  
Streak
White
  
White
  
Porosity
Highly Porous
  
Less Porous
  
Luster
Phyllitic
  
Greasy to Dull
  
Compressive Strength
Not Available
  
150.00 N/mm
2
  
14
Cleavage
Crenulation and Pervasive
  
Poor
  
Toughness
1.2
  
Not Available
  
Specific Gravity
2.72-2.73
  
2.6
  
Transparency
Opaque
  
Translucent to Opaque
  
Density
2.18-3.3 g/cm3
  
2.6 g/cm3
  
Thermal Properties
  
  
Resistance
Heat Resistant, Pressure Resistant, Water Resistant
  
Heat Resistant, Impact Resistant, Wear Resistant
  
Deposits in Eastern Continents
  
  
Asia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
  
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
  
Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
  
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
  
Europe
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
  
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden
  
Others
Not Yet Found
  
Greenland
  
Deposits in Western Continents
  
  
North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
  
Canada, USA
  
South America
Brazil, Colombia, Guyana
  
Brazil, Chile, Colombia, Uruguay, Venezuela
  
Deposits in Oceania Continent
  
  
Australia
New South Wales, New Zealand, Queensland
  
New Zealand, Queensland, South Australia, Tasmania, Western Australia
  
Phyllite vs Borolanite Characteristics
Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Phyllite vs Borolanite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Phyllite and Properties of Borolanite. Learn more about Phyllite vs Borolanite in the next section. The interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Borolanite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Phyllite and Borolanite, they have various applications in construction industry. The uses of Phyllite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone and that of Borolanite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.
More about Phyllite and Borolanite
Here you can know more about Phyllite and Borolanite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Phyllite and Borolanite consists of mineral content and compound content. The mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon and mineral content of Borolanite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Metamorphic Rocks. When we have to compare Phyllite vs Borolanite, the texture, color and appearance plays an important role in determining the type of rock. Phyllite is available in black to grey, light greenish grey colors whereas, Borolanite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Phyllite is Crinkled or Wavy and that of Borolanite is Banded and Foilated. Properties of rock is another aspect for Phyllite vs Borolanite. The hardness of Phyllite is 1-2 and that of Borolanite is 5.5-6. The types of Phyllite are Not Available whereas types of Borolanite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Phyllite and Borolanite is white. The specific heat capacity of Phyllite is Not Available and that of Borolanite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Phyllite is heat resistant, pressure resistant, water resistant whereas Borolanite is heat resistant, impact resistant, wear resistant.