Home
Compare Rocks


Migmatite vs Limestone


Limestone vs Migmatite


Definition

Definition
Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components   
Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate   

History
  
  

Origin
Southern Alps, France   
New Zealand   

Discoverer
Jakob Sederholm   
Belsazar Hacquet   

Etymology
From the Greek word migma which means a mixture   
From lime and stone in late 14th Century   

Class
Metamorphic Rocks   
Sedimentary Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Not Applicable   
Not Applicable   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Foliated   
Clastic or Non-Clastic   

Color
Black, Bluish - Grey, Brown, Brown- Black, Dark Greenish - Grey, Dark Grey to Black   
Beige, Black, Blue, Brown, Cream, Gold, Green, Grey, Light Green, Light Grey, Linen, Pink, Red, Rust, Silver, White, Yellow   

Maintenance
More   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
No   

Scratch Resistant
Yes   
Yes   

Stain Resistant
No   
Yes   

Wind Resistant
No   
No   

Acid Resistant
No   
No   

Appearance
Dull, Banded and Foilated   
Rough and Banded   

Uses

Architecture
  
  

Interior Uses
Countertops, Flooring, Kitchens   
Decorative Aggregates, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone   
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement   
Cement Manufacture, Cobblestones, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium   

Medical Industry
Not Yet Used   
In Chemical and Pharmaceutical Industry, Medicines and Cosmetics   

Antiquity Uses
Artifacts   
Artifacts, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Jewelry, Tombstones, Used to manufracture paperweights and bookends   
Animal feed filler, As a Feed Additive for Livestock, Paper Industry, Raw material for manufacture of quicklime, slaked lime, Soil Conditioner, Used in aquariums, Whiting material in toothpaste, paint and paper   

Types

Types
Diatexites and Metatexites   
Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa   

Features
Generally rough to touch, Is one of the oldest rock   
Host Rock for Lead, Stalactites and stalagmites are formed from this rock, Zinc and Copper Deposits   

Archaeological Significance
  
  

Monuments
Not Yet Used   
Used   

Famous Monuments
Not Applicable   
Acropolis of Athens in Greece, Agia Sophia in Istanbul, Turkey, Al Aqsa Mosque in Jerusalem, Angkor Wat in Cambodia, Big Ben in London, Charminar in Hyderabad, India, Chhatrapati Shivaji Terminus in Maharashtra, India, Chichen Itza in Mexico, Empire State Building in New York, Khajuraho Temples, India, Kremlin in Moscow, Louvre in Paris, France, Neuschwanstein in Bavaria, Potala Palace in Lahasa, Tibet, Wailing Wall in Jerusalem   

Sculpture
Not Yet Used   
Used   

Famous Sculptures
Not Applicable   
Ajanta Caves in Maharashtra, India, Elephanta Caves in Maharashtra, India   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Not Yet Used   
Used   

Fossils
Absent   
Present   

Formation

Formation
Migmatites form by high temperature regional and thermal metamorphism of protolith rocks where rocks melt partially due to high temperature.   
Limestone is a sedimentary rock which is mainly made up of calcium carbonate.   

Composition
  
  

Mineral Content
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon   
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt   

Compound Content
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, MgO   

Transformation
  
  

Metamorphism
Yes   
No   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism   
Not Applicable   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Glacier Erosion, Water Erosion, Wind Erosion   
Chemical Erosion, Coastal Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6.5   
3-4   

Grain Size
Medium to Fine Coarse Grained   
Fine Grained   

Fracture
Irregular   
Splintery   

Streak
White   
White   

Porosity
Very Less Porous   
Less Porous   

Luster
Dull to Pearly to Subvitreous   
Dull to Pearly   

Compressive Strength
Not Available   
115.00 N/mm2   
18

Cleavage
Poor   
Non-Existent   

Toughness
1.2   
1   

Specific Gravity
2.65-2.75   
2.3-2.7   

Transparency
Opaque   
Opaque   

Density
Not Available   
2.3-2.7 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
Not Available   
0.91 kJ/Kg K   
11

Resistance
Heat Resistant, Pressure Resistant   
Pressure Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia   
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam   

Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo   
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe   

Europe
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Sweden, Switzerland, Ukraine, United Kingdom   
United Kingdom   

Others
Not Yet Found   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA   
USA   

South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela   
Colombia   

Deposits in Oceania Continent
  
  

Australia
New South Wales, New Zealand, Queensland, Victoria   
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula   

Definition >>
<< All

Migmatite vs Limestone Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Migmatite and Limestone Reserves. Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components. Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Migmatite vs Limestone information and Migmatite vs Limestone characteristics in the upcoming sections.

Compare Metamorphic Rocks

Migmatite vs Limestone Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Migmatite vs Limestone characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Migmatite and Properties of Limestone. Learn more about Migmatite vs Limestone in the next section. The interior uses of Migmatite include Countertops, Flooring and Kitchens whereas the interior uses of Limestone include Decorative aggregates and Interior decoration. Due to some exceptional properties of Migmatite and Limestone, they have various applications in construction industry. The uses of Migmatite in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement and that of Limestone include Cement manufacture, Cobblestones, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium.

More about Migmatite and Limestone

Here you can know more about Migmatite and Limestone. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Migmatite and Limestone consists of mineral content and compound content. The mineral content of Migmatite includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon and mineral content of Limestone includes Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt. You can also check out the list of all Metamorphic Rocks. When we have to compare Migmatite vs Limestone, the texture, color and appearance plays an important role in determining the type of rock. Migmatite is available in black, bluish - grey, brown, brown- black, dark greenish - grey, dark grey to black colors whereas, Limestone is available in beige, black, blue, brown, cream, gold, green, grey, light green, light grey, linen, pink, red, rust, silver, white, yellow colors. Appearance of Migmatite is Dull, Banded and Foilated and that of Limestone is Rough and Banded. Properties of rock is another aspect for Migmatite vs Limestone. The hardness of Migmatite is 5.5-6.5 and that of Limestone is 3-4. The types of Migmatite are Diatexites and Metatexites whereas types of Limestone are Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Migmatite and Limestone is white. The specific heat capacity of Migmatite is Not Available and that of Limestone is 0.91 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Migmatite is heat resistant, pressure resistant whereas Limestone is pressure resistant.

Metamorphic Rocks

Metamorphic Rocks

» More Metamorphic Rocks

Compare Metamorphic Rocks

» More Compare Metamorphic Rocks