Home
Compare Rocks


Migmatite and Pyroxenite


Pyroxenite and Migmatite


Definition

Definition
Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components   
Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine   

History
  
  

Origin
Southern Alps, France   
Unknown   

Discoverer
Jakob Sederholm   
Unknown   

Etymology
From the Greek word migma which means a mixture   
From pyro- fire + Greek xenos stranger as the mineral group was new to igneous rocks   

Class
Metamorphic Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Not Applicable   
Plutonic   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   
Coarse Grained Rock, Opaque Rock   

Texture

Texture
Foliated   
Clastic, Granular, Phaneritic, Porphyritic   

Color
Black, Bluish - Grey, Brown, Brown- Black, Dark Greenish - Grey, Dark Grey to Black   
Black to Grey, Bluish - Grey, Dark Greenish - Grey, Green, Light Greenish Grey   

Maintenance
More   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
No   
Yes   

Wind Resistant
No   
Yes   

Acid Resistant
No   
Yes   

Appearance
Dull, Banded and Foilated   
Layered, Banded, Veined and Shiny   

Uses

Architecture
  
  

Interior Uses
Countertops, Flooring, Kitchens   
Countertops, Decorative Aggregates, Interior Decoration, Kitchens   

Exterior Uses
As Building Stone, As Facing Stone   
As Building Stone, As Facing Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement   
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts   
Artifacts   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Jewelry, Tombstones, Used to manufracture paperweights and bookends   
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones   

Types

Types
Diatexites and Metatexites   
Clinopyroxenites, Orthopyroxenites and Websterites   

Features
Generally rough to touch, Is one of the oldest rock   
Generally rough to touch, Host rock for Diamond, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Not Yet Used   
Not Yet Used   

Famous Monuments
Not Applicable   
Not Applicable   

Sculpture
Not Yet Used   
Not Yet Used   

Famous Sculptures
Not Applicable   
Not Applicable   

Pictographs
Used   
Not Used   

Petroglyphs
Used   
Not Used   

Figurines
Not Yet Used   
Not Yet Used   

Fossils
Absent   
Absent   

Formation

Formation
Migmatites form by high temperature regional and thermal metamorphism of protolith rocks where rocks melt partially due to high temperature.   
Pyroxenites are ultramafic igneous rocks which are made up of minerals of the pyroxene group, such as augite and diopside, hypersthene, bronzite or enstatite.   

Composition
  
  

Mineral Content
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon   
Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene   

Compound Content
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism   
Burial Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Glacier Erosion, Water Erosion, Wind Erosion   
Chemical Erosion, Coastal Erosion, Water Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6.5   
7   

Grain Size
Medium to Fine Coarse Grained   
Coarse Grained   

Fracture
Irregular   
Uneven   

Streak
White   
White, Greenish White or Grey   

Porosity
Very Less Porous   
Less Porous   

Luster
Dull to Pearly to Subvitreous   
Dull to Vitreous to Submetallic   

Cleavage
Poor   
Irregular   

Toughness
1.2   
Not Available   

Specific Gravity
2.65-2.75   
3.2-3.5   

Transparency
Opaque   
Opaque   

Density
Not Available   
3.1-3.6 g/cm3   

Thermal Properties
  
  

Resistance
Heat Resistant, Pressure Resistant   
Impact Resistant, Pressure Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia   
India, Russia   

Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo   
South Africa   

Europe
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Sweden, Switzerland, Ukraine, United Kingdom   
Germany, Greece, Italy, Scotland, Turkey   

Others
Not Yet Found   
Greenland   

Deposits in Western Continents
  
  

North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA   
Canada, USA   

South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela   
Brazil, Colombia, Venezuela   

Deposits in Oceania Continent
  
  

Australia
New South Wales, New Zealand, Queensland, Victoria   
New Zealand, Queensland   

Summary >>
<< Reserves

All about Migmatite and Pyroxenite Properties

Know all about Migmatite and Pyroxenite properties here. All properties of rocks are important as they define the type of rock and its application. Migmatite belongs to Metamorphic Rocks while Pyroxenite belongs to Igneous Rocks.Texture of Migmatite is Foliated whereas that of Pyroxenite is Clastic, Granular, Phaneritic, Porphyritic. Migmatite appears Dull, Banded and Foilated and Pyroxenite appears Layered, Banded, Veined and Shiny. The luster of Migmatite is dull to pearly to subvitreous while that of Pyroxenite is dull to vitreous to submetallic. Migmatite is available in black, bluish - grey, brown, brown- black, dark greenish - grey, dark grey to black colors whereas Pyroxenite is available in black to grey, bluish - grey, dark greenish - grey, green, light greenish grey colors. The commercial uses of Migmatite are cemetery markers, jewelry, tombstones, used to manufracture paperweights and bookends and that of Pyroxenite are cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones.

Compare Metamorphic Rocks

Metamorphic Rocks

Metamorphic Rocks

» More Metamorphic Rocks

Compare Metamorphic Rocks

» More Compare Metamorphic Rocks