×

Mangerite
Mangerite

Kimberlite
Kimberlite



ADD
Compare
X
Mangerite
X
Kimberlite

Mangerite vs Kimberlite

1 Definition
1.1 Definition
Mangerite is a plutonic intrusive igneous rock, which is essentially a hypersthene-bearing monzonite
Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.
1.2 History
1.2.1 Origin
Unknown
Kimberley, South Africa
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
Not Available
From Kimberley +‎ -ite, from the name of the South African town of Kimberley where the rock was first found.
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Porphyritic
2.2 Color
Black, Brown, Light to Dark Grey, White
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Shiny
Dull and Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Countertops, Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration
As Building Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Basaltic Kimberlites and Micaceous Kimberlites
4.2 Features
Available in lots of colors, Is one of the oldest rock
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Mangerite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Kimberlite is an igneous rock and is the main source of diamonds. Its formation takes place deep beneath the Earth’s surface between 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Garnet, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-76-7
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine to Coarse Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Subvitreous to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
310.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Conchoidal
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.8-32.86-2.87
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.9-2.91 g/cm32.95-2.96 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg K0.92 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
Russia
7.1.2 Africa
Angola, Egypt, Ethiopia, Madagascar, Namibia, Nigeria, South Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia
New South Wales, New Zealand, South Australia, Western Australia

Mangerite vs Kimberlite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Mangerite and Kimberlite Reserves. Mangerite is a plutonic intrusive igneous rock, which is essentially a hypersthene-bearing monzonite. Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Mangerite vs Kimberlite information and Mangerite vs Kimberlite characteristics in the upcoming sections.

Mangerite vs Kimberlite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Mangerite vs Kimberlite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Mangerite and Properties of Kimberlite. Learn more about Mangerite vs Kimberlite in the next section. The interior uses of Mangerite include Decorative aggregates and Interior decoration whereas the interior uses of Kimberlite include Countertops, Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Mangerite and Kimberlite, they have various applications in construction industry. The uses of Mangerite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate and that of Kimberlite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Mangerite and Kimberlite

Here you can know more about Mangerite and Kimberlite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Mangerite and Kimberlite consists of mineral content and compound content. The mineral content of Mangerite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Kimberlite includes Garnet, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Mangerite vs Kimberlite, the texture, color and appearance plays an important role in determining the type of rock. Mangerite is available in black, brown, light to dark grey, white colors whereas, Kimberlite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Mangerite is Shiny and that of Kimberlite is Dull and Banded. Properties of rock is another aspect for Mangerite vs Kimberlite. Hardness of Mangerite and Kimberlite is 6-7. The types of Mangerite are Not Available whereas types of Kimberlite are Basaltic Kimberlites and Micaceous Kimberlites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Mangerite and Kimberlite is white. The specific heat capacity of Mangerite is 0.92 kJ/Kg K and that of Kimberlite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Mangerite is heat resistant, impact resistant, pressure resistant whereas Kimberlite is heat resistant, impact resistant.