×

Luxullianite
Luxullianite

Sovite
Sovite



ADD
Compare
X
Luxullianite
X
Sovite

Luxullianite vs Sovite

1 Definition
1.1 Definition
Luxullianite is a rare type of granite, known for presence of clusters of radially arranged acicular tourmaline crystals which are enclosed by phenocrysts of orthoclase and quartz in a matrix of quartz, tourmaline, alkali feldspar, brown mica.
Sovite is a coarse-grained variety of carbonatite which belongs to intrusive igneous rock
1.2 History
1.2.1 Origin
England
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the village of Luxulyan in Cornwall, England, where this variety of granite is found
Not Available
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular, Phaneritic
Granular, Poikiloblastic
2.2 Color
Black, Grey, Orange, Pink, White
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Veined or Pebbled
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
Decorative Aggregates, Homes
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Unknown, Unknown
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling, Gemstone, Laboratory bench tops, Tombstones
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Creating Artwork, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite
Not Available
4.2 Features
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
Available in lots of colors, Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Luxullianite is an intrusive igneous rock which is very hard, crystalline and is visibly homogeneous in texture. It is found in large plutons on the continents, i.e. in areas where the Earth's crust has been deeply eroded.
Sovites are formed due to low degrees of partial melting of rocks.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
Ancylite, Apatite, Barite, Fluorite, Magnetite, Natrolite, Sodalite
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Carbon Dioxide, Sodium Oxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-73
Coal
1 7
6.1.2 Grain Size
Large and Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Dull to Grainy with Sporadic parts Pearly and Vitreous
Subvitreous to Dull
6.1.7 Compressive Strength
175.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
Not Available
1
6.1.10 Specific Gravity
2.6-2.72.86-2.87
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.6-2.8 g/cm32.84-2.86 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.79 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Namibia, Nigeria, South Africa
7.1.3 Europe
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Not Yet Found
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, New Zealand

Luxullianite vs Sovite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Luxullianite and Sovite Reserves. Luxullianite is a rare type of granite, known for presence of clusters of radially arranged acicular tourmaline crystals which are enclosed by phenocrysts of orthoclase and quartz in a matrix of quartz, tourmaline, alkali feldspar, brown mica.. Sovite is a coarse-grained variety of carbonatite which belongs to intrusive igneous rock. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Luxullianite vs Sovite information and Luxullianite vs Sovite characteristics in the upcoming sections.

Luxullianite vs Sovite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Luxullianite vs Sovite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Luxullianite and Properties of Sovite. Learn more about Luxullianite vs Sovite in the next section. The interior uses of Luxullianite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Homes, Hotels, Interior decoration, Kitchens and Stair treads whereas the interior uses of Sovite include Decorative aggregates and Homes. Due to some exceptional properties of Luxullianite and Sovite, they have various applications in construction industry. The uses of Luxullianite in construction industry include As dimension stone and that of Sovite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Unknown, Unknown.

More about Luxullianite and Sovite

Here you can know more about Luxullianite and Sovite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Luxullianite and Sovite consists of mineral content and compound content. The mineral content of Luxullianite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Sovite includes Ancylite, Apatite, Barite, Fluorite, Magnetite, Natrolite, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Luxullianite vs Sovite, the texture, color and appearance plays an important role in determining the type of rock. Luxullianite is available in black, grey, orange, pink, white colors whereas, Sovite is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Luxullianite is Veined or Pebbled and that of Sovite is Dull, Banded and Foilated. Properties of rock is another aspect for Luxullianite vs Sovite. The hardness of Luxullianite is 6-7 and that of Sovite is 3. The types of Luxullianite are Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite whereas types of Sovite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Luxullianite and Sovite is white. The specific heat capacity of Luxullianite is 0.79 kJ/Kg K and that of Sovite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Luxullianite is heat resistant, wear resistant whereas Sovite is heat resistant, pressure resistant.