Home
×

Litchfieldite
Litchfieldite

Latite
Latite



ADD
Compare
X
Litchfieldite
X
Latite

Litchfieldite and Latite

1 Definition
1.1 Definition
Litchfieldite is a rare igneous rock which is coarse-grained, foliated and a variety of nepheline syenite, sometimes also called as nepheline syenite gneiss or gneissic nepeheline syenite
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
1.2 History
1.2.1 Origin
USA
Italy
1.2.2 Discoverer
Bayley
Unknown
1.3 Etymology
From its occurrence at Litchfield, Maine, USA
From the Latin word latium
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Aphanitic to Porphyritic
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Borolanite and Litchfieldite
Rhomb porphyries
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Litchfieldite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Alkali feldspar, Biotite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Cl, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
5-5.5
6.1.2 Grain Size
Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal to Uneven
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Greasy to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
What Is Flint
150.00 N/mm2
Rank: 14 (Overall)
310.00 N/mm2
Rank: 2 (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Perfect
6.1.9 Toughness
Not Available
2.7
6.1.10 Specific Gravity
2.6
2.86
6.1.11 Transparency
Translucent to Opaque
Translucent
6.1.12 Density
2.6 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Not Yet Found
7.1.2 Africa
South Africa
Not Yet Found
7.1.3 Europe
Finland, Norway, Portugal
Bulgaria
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
USA
7.2.2 South America
Brazil
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Not Yet Found

All about Litchfieldite and Latite Properties

Know all about Litchfieldite and Latite properties here. All properties of rocks are important as they define the type of rock and its application. Litchfieldite and Latite belong to Igneous Rocks.Texture of Litchfieldite is Granular whereas that of Latite is Aphanitic to Porphyritic. Litchfieldite appears Banded and Foilated and Latite appears Rough. The luster of Litchfieldite is greasy to dull while that of Latite is subvitreous to dull. Litchfieldite is available in brown, buff, cream, green, grey, pink, white colors whereas Latite is available in black, brown, colourless, green, grey, pink, white colors. The commercial uses of Litchfieldite are creating artwork and that of Latite are an oil and gas reservoir, as a feed additive for livestock, metallurgical flux, soil conditioner, source of magnesia (mgo).