Home

Igneous Rocks + -

Fossil Rocks + -

Metamorphic Rocks + -

Durable Rocks + -

Medium Grained Rocks + -

Compare Rocks


Lignite and Kimberlite


Kimberlite and Lignite


Definition

Definition
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat   
Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.   

History
  
  

Origin
France   
Kimberley, South Africa   

Discoverer
Unknown   
Unknown   

Etymology
From French, Latin lignum wood + -ite1   
From Kimberley +‎ -ite, from the name of the South African town of Kimberley where the rock was first found.   

Class
Sedimentary Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Soft Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Not Applicable   
Volcanic   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Opaque Rock   

Texture

Texture
Amorphous, Glassy   
Porphyritic   

Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey   
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
No   
Yes   

Scratch Resistant
No   
Yes   

Stain Resistant
No   
Yes   

Wind Resistant
No   
Yes   

Acid Resistant
No   
Yes   

Appearance
Veined or Pebbled   
Dull and Banded   

Uses

Architecture
  
  

Interior Uses
Not Yet Used   
Countertops, Decorative Aggregates, Homes, Interior Decoration   

Exterior Uses
Not Yet Used   
As Building Stone, Paving Stone, Garden Decoration   

Other Architectural Uses
Not Yet Used   
Curbing   

Industry
  
  

Construction Industry
for Road Aggregate, Steel Production   
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   

Medical Industry
Not Yet Used   
Taken as a Supplement for Calcium or Magnesium   

Antiquity Uses
Not Yet Used   
Artifacts, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
Electricity Generation   
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   

Types

Types
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite   
Basaltic Kimberlites and Micaceous Kimberlites   

Features
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel   
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny   

Archaeological Significance
  
  

Monuments
Not Yet Used   
Used   

Famous Monuments
Not Applicable   
Data Not Available   

Sculpture
Not Yet Used   
Used   

Famous Sculptures
Not Applicable   
Data Not Available   

Pictographs
Used   
Not Used   

Petroglyphs
Used   
Not Used   

Figurines
Not Yet Used   
Used   

Fossils
Present   
Absent   

Formation

Formation
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.   
Kimberlite is an igneous rock and is the main source of diamonds. Its formation takes place deep beneath the Earth’s surface between 150 to 450 kilometres, and are erupted rapidly and violently.   

Composition
  
  

Mineral Content
Not Available   
Garnet, Olivine, Phlogopite, Pyroxene   

Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur   
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
No   
Yes   

Types of Metamorphism
Not Applicable   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion   
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
1   
6-7   

Grain Size
Medium to Fine Coarse Grained   
Fine to Coarse Grained   

Fracture
Conchoidal   
Conchoidal   

Streak
Black   
White   

Porosity
Highly Porous   
Very Less Porous   

Luster
Dull to Vitreous to Submetallic   
Subvitreous to Dull   

Cleavage
Non-Existent   
Conchoidal   

Toughness
Not Available   
Not Available   

Specific Gravity
1.1-1.4   
2.86-2.87   

Transparency
Opaque   
Translucent to Opaque   

Density
800-801 g/cm3   
2.95-2.96 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
1.26 kJ/Kg K   
5
0.92 kJ/Kg K   
10

Resistance
Heat Resistant   
Heat Resistant, Impact Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam   
Russia   

Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania   
Angola, Botswana, Cameroon, Ethiopia, South Africa   

Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom   
England, Hungary, Iceland, United Kingdom   

Others
Not Yet Found   
Antarctica   

Deposits in Western Continents
  
  

North America
Canada, Mexico, USA   
Canada, USA   

South America
Brazil, Chile, Colombia, Venezuela   
Argentina, Colombia, Ecuador   

Deposits in Oceania Continent
  
  

Australia
New South Wales, Queensland, Victoria   
New South Wales, New Zealand, South Australia, Western Australia   

Summary >>
<< Reserves

All about Lignite and Kimberlite Properties

Know all about Lignite and Kimberlite properties here. All properties of rocks are important as they define the type of rock and its application. Lignite belongs to Sedimentary Rocks while Kimberlite belongs to Igneous Rocks.Texture of Lignite is Amorphous, Glassy whereas that of Kimberlite is Porphyritic. Lignite appears Veined or Pebbled and Kimberlite appears Dull and Banded. The luster of Lignite is dull to vitreous to submetallic while that of Kimberlite is subvitreous to dull. Lignite is available in black, brown, dark brown, grey, light to dark grey colors whereas Kimberlite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. The commercial uses of Lignite are electricity generation and that of Kimberlite are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo).

Compare Sedimentary Rocks

Fossil Rocks

Fossil Rocks

» More Fossil Rocks

Compare Sedimentary Rocks

» More Compare Sedimentary Rocks