Home

Igneous Rocks + -

Fossil Rocks + -

Metamorphic Rocks + -

Durable Rocks + -

Medium Grained Rocks + -

Compare Rocks


Larvikite vs Phonolite


Phonolite vs Larvikite


Definition

Definition
Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar   
Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic   

History
  
  

Origin
Larvik, Norway   
Unknown   

Discoverer
Unknown   
Unknown   

Etymology
From the town of Larvik in Norway, where this type of igneous rock is found   
From the Greek meaning sounding stone because of the metallic sound it produces if an unfractured plate is hit   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Hard Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Plutonic   
Not Applicable   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Phaneritic   
Granular   

Color
Black, Brown, Light to Dark Grey, White   
Brown, Buff, Cream, Green, Grey, Pink, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
Yes   

Wind Resistant
Yes   
No   

Acid Resistant
No   
Yes   

Appearance
Shiny   
Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Homes, Interior Decoration   
Countertops, Decorative Aggregates, Flooring, Homes   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone   
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate   
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts, Monuments, Sculpture   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork   
Cemetery Markers, Creating Artwork   

Types

Types
Quartz Monzonite, Syenite and Diorite   
Kenyte   

Features
Available in lots of colors, Is one of the oldest rock   
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Not Used   
Used   

Petroglyphs
Not Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Larvikite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.   
Phonolite are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   

Composition
  
  

Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon   
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism   
Contact Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion   
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
6-7   
5.5-6   

Grain Size
Medium to Fine Coarse Grained   
Fine Grained   

Fracture
Not Available   
Conchoidal to Uneven   

Streak
White   
White   

Porosity
Less Porous   
Less Porous   

Luster
Subvitreous to Dull   
Greasy to Dull   

Compressive Strength
310.00 N/mm2   
2
150.00 N/mm2   
14

Cleavage
Not Available   
Poor   

Toughness
Not Available   
Not Available   

Specific Gravity
2.8-3   
2.6   

Transparency
Opaque   
Translucent to Opaque   

Density
2.9-2.91 g/cm3   
2.6 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.92 kJ/Kg K   
10
Not Available   

Resistance
Heat Resistant, Impact Resistant, Pressure Resistant   
Heat Resistant, Impact Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Not Yet Found   
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   

Africa
Not Yet Found   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland   
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden   

Others
Not Yet Found   
Greenland   

Deposits in Western Continents
  
  

North America
USA   
Canada, USA   

South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru   
Brazil, Chile, Colombia, Uruguay, Venezuela   

Deposits in Oceania Continent
  
  

Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia   
New Zealand, Queensland, South Australia, Tasmania, Western Australia   

Definition >>
<< All

Larvikite vs Phonolite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Larvikite and Phonolite Reserves. Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar. Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Larvikite vs Phonolite information and Larvikite vs Phonolite characteristics in the upcoming sections.

Compare Igneous Rocks

Larvikite vs Phonolite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Larvikite vs Phonolite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Larvikite and Properties of Phonolite. Learn more about Larvikite vs Phonolite in the next section. The interior uses of Larvikite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Phonolite include Countertops, Decorative aggregates, Flooring and Homes. Due to some exceptional properties of Larvikite and Phonolite, they have various applications in construction industry. The uses of Larvikite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate and that of Phonolite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Larvikite and Phonolite

Here you can know more about Larvikite and Phonolite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Larvikite and Phonolite consists of mineral content and compound content. The mineral content of Larvikite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Phonolite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Larvikite vs Phonolite, the texture, color and appearance plays an important role in determining the type of rock. Larvikite is available in black, brown, light to dark grey, white colors whereas, Phonolite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Larvikite is Shiny and that of Phonolite is Banded and Foilated. Properties of rock is another aspect for Larvikite vs Phonolite. The hardness of Larvikite is 6-7 and that of Phonolite is 5.5-6. The types of Larvikite are Quartz Monzonite, Syenite and Diorite whereas types of Phonolite are Kenyte. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Larvikite and Phonolite is white. The specific heat capacity of Larvikite is 0.92 kJ/Kg K and that of Phonolite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Larvikite is heat resistant, impact resistant, pressure resistant whereas Phonolite is heat resistant, impact resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks