Home

Igneous Rocks + -

Fossil Rocks + -

Metamorphic Rocks + -

Durable Rocks + -

Medium Grained Rocks + -

Compare Rocks


Larvikite and Dolomite


Dolomite and Larvikite


Definition

Definition
Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar   
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight   

History
  
  

Origin
Larvik, Norway   
Southern Alps, France   

Discoverer
Unknown   
Dolomieu   

Etymology
From the town of Larvik in Norway, where this type of igneous rock is found   
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock   

Class
Igneous Rocks   
Sedimentary Rocks   

Sub-Class
Durable Rock, Hard Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Plutonic   
Not Applicable   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   

Texture

Texture
Phaneritic   
Earthy   

Color
Black, Brown, Light to Dark Grey, White   
Black, Brown, Colourless, Green, Grey, Pink, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
No   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
No   

Wind Resistant
Yes   
No   

Acid Resistant
No   
No   

Appearance
Shiny   
Glassy or Pearly   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Homes, Interior Decoration   
Decorative Aggregates, Homes, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone   
Garden Decoration, Office Buildings   

Other Architectural Uses
Curbing   
Not Yet Used   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate   
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock   

Medical Industry
Not Yet Used   
Taken as a Supplement for Calcium or Magnesium   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork   
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   

Types

Types
Quartz Monzonite, Syenite and Diorite   
Boninite and Jasperoid   

Features
Available in lots of colors, Is one of the oldest rock   
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Not Used   
Used   

Petroglyphs
Not Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Present   

Formation

Formation
Larvikite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.   
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.   

Composition
  
  

Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon   
Clay Minerals, Pyrite, Quartz, Sulfides   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism   

Weathering
Yes   
No   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Not Applicable   

Erosion
Yes   
No   

Types of Erosion
Chemical Erosion   
Not Applicable   

Properties

Physical Properties
  
  

Hardness
6-7   
3.5-4   

Grain Size
Medium to Fine Coarse Grained   
Medium to Fine Coarse Grained   

Fracture
Not Available   
Conchoidal   

Streak
White   
White   

Porosity
Less Porous   
Less Porous   

Luster
Subvitreous to Dull   
Vitreous and Pearly   

Compressive Strength
310.00 N/mm2   
2
140.00 N/mm2   
15

Cleavage
Not Available   
Perfect   

Toughness
Not Available   
1   

Specific Gravity
2.8-3   
2.8-3   

Transparency
Opaque   
Transparent to Translucent   

Density
2.9-2.91 g/cm3   
2.8-2.9 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.92 kJ/Kg K   
10
0.92 kJ/Kg K   
10

Resistance
Heat Resistant, Impact Resistant, Pressure Resistant   
Heat Resistant, Pressure Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Not Yet Found   
China, India   

Africa
Not Yet Found   
Morocco, Namibia   

Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland   
Austria, Italy, Romania, Spain, Switzerland   

Others
Not Yet Found   
Not Yet Found   

Deposits in Western Continents
  
  

North America
USA   
Mexico, USA   

South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru   
Brazil, Colombia   

Deposits in Oceania Continent
  
  

Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia   
New South Wales, Queensland, Yorke Peninsula   

Summary >>
<< Reserves

All about Larvikite and Dolomite Properties

Know all about Larvikite and Dolomite properties here. All properties of rocks are important as they define the type of rock and its application. Larvikite belongs to Igneous Rocks while Dolomite belongs to Sedimentary Rocks.Texture of Larvikite is Phaneritic whereas that of Dolomite is Earthy. Larvikite appears Shiny and Dolomite appears Glassy or Pearly. The luster of Larvikite is subvitreous to dull while that of Dolomite is vitreous and pearly. Larvikite is available in black, brown, light to dark grey, white colors whereas Dolomite is available in black, brown, colourless, green, grey, pink, white colors. The commercial uses of Larvikite are cemetery markers, commemorative tablets, creating artwork and that of Dolomite are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo).

Compare Igneous Rocks

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks