×

Kimberlite
Kimberlite

Schist
Schist



ADD
Compare
X
Kimberlite
X
Schist

Kimberlite vs Schist

Add ⊕
1 Definition
1.1 Definition
Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.
Schist is a medium grade metamorphic rock with medium to large, flat, sheet like grains in a preferred orientation
1.2 History
1.2.1 Origin
Kimberley, South Africa
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Kimberley +‎ -ite, from the name of the South African town of Kimberley where the rock was first found.
From French schiste, Greek skhistos i.e. split
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Foliated, Platy
2.2 Color
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
Black, Blue, Brown, Dark Brown, Green, Grey, Silver
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Dull and Banded
Layered and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration
Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Building houses or walls, Cement Manufacture, for Road Aggregate, Roadstone
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Used in aquariums, Writing Slates
4 Types
4.1 Types
Basaltic Kimberlites and Micaceous Kimberlites
Mica Schists, Calc-Silicate Schists, Graphite Schists, Blueschists, Whiteschists, Greenschists, Hornblende Schist, Talc Schist, Chlorite Schist, Garnet Schist, Glaucophane schist.
4.2 Features
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
Easily splits into thin plates, Smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Kimberlite is an igneous rock and is the main source of diamonds. Its formation takes place deep beneath the Earth’s surface between 150 to 450 kilometres, and are erupted rapidly and violently.
Schist formed by dynamic metamorphism at high temperatures and pressures that aligns the grains of mica, hornblende and other elongated minerals into thin layers.
5.2 Composition
5.2.1 Mineral Content
Garnet, Olivine, Phlogopite, Pyroxene
Alusite, Amphibole, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
CaO, Carbon Dioxide, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-73.5-4
Coal
1 7
6.1.2 Grain Size
Fine to Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Shiny
6.1.7 Compressive Strength
NANA
Obsidian
0.15 450
6.1.8 Cleavage
Conchoidal
Slaty
6.1.9 Toughness
Not Available
1.5
6.1.10 Specific Gravity
2.86-2.872.5-2.9
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.95-2.96 g/cm32.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant
Impact Resistant, Pressure Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Russia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
7.1.2 Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
7.1.3 Europe
England, Hungary, Iceland, United Kingdom
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
7.1.4 Others
Antarctica
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Argentina, Colombia, Ecuador
Brazil, Colombia, Guyana
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, South Australia, Western Australia
New South Wales, New Zealand, Queensland

Kimberlite vs Schist Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Kimberlite and Schist Reserves. Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.. Schist is a medium grade metamorphic rock with medium to large, flat, sheet like grains in a preferred orientation. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Kimberlite vs Schist information and Kimberlite vs Schist characteristics in the upcoming sections.

Kimberlite vs Schist Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Kimberlite vs Schist characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Kimberlite and Properties of Schist. Learn more about Kimberlite vs Schist in the next section. The interior uses of Kimberlite include Countertops, Decorative aggregates, Homes and Interior decoration whereas the interior uses of Schist include Decorative aggregates, Floor tiles and Interior decoration. Due to some exceptional properties of Kimberlite and Schist, they have various applications in construction industry. The uses of Kimberlite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Schist include As dimension stone, Building houses or walls, Cement manufacture, For road aggregate, Roadstone.

More about Kimberlite and Schist

Here you can know more about Kimberlite and Schist. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Kimberlite and Schist consists of mineral content and compound content. The mineral content of Kimberlite includes Garnet, Olivine, Phlogopite, Pyroxene and mineral content of Schist includes Alusite, Amphibole, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc. You can also check out the list of all Igneous Rocks. When we have to compare Kimberlite vs Schist, the texture, color and appearance plays an important role in determining the type of rock. Kimberlite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors whereas, Schist is available in black, blue, brown, dark brown, green, grey, silver colors. Appearance of Kimberlite is Dull and Banded and that of Schist is Layered and Shiny. Properties of rock is another aspect for Kimberlite vs Schist. The hardness of Kimberlite is 6-7 and that of Schist is 3.5-4. The types of Kimberlite are Basaltic Kimberlites and Micaceous Kimberlites whereas types of Schist are Mica Schists, Calc-Silicate Schists, Graphite Schists, Blueschists, Whiteschists, Greenschists, Hornblende Schist, Talc Schist, Chlorite Schist, Garnet Schist, Glaucophane schist.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Kimberlite and Schist is white. The specific heat capacity of Kimberlite is 0.92 kJ/Kg K and that of Schist is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Kimberlite is heat resistant, impact resistant whereas Schist is impact resistant, pressure resistant, water resistant.