Home
Compare Rocks


Kenyte vs Skarn


Skarn vs Kenyte


Definition

Definition
Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix   
Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin   

History
  
  

Origin
Mount Kenya   
USA, Australia   

Discoverer
J. W. Gregory   
Tornebohm   

Etymology
From the mountain ranges- Mount Kenya and is named by J. W. Gregory in 1900   
From an old Swedish mining term originally used to describe a type of silicate gangue or waste rock.   

Class
Igneous Rocks   
Metamorphic Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Not Applicable   
Not Applicable   

Other Categories
Fine Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Glassy, Granular   
Earthy, Mud-rich, Rough   

Color
Brown, Buff, Cream, Green, Grey, Pink, White   
Black, Brown, Colourless, Green, Grey, White   

Maintenance
More   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
No   
No   

Wind Resistant
No   
Yes   

Acid Resistant
No   
Yes   

Appearance
Banded and Foilated   
Dull   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Entryways, Homes, Interior Decoration, Kitchens   
Decorative Aggregates, Entryways, Interior Decoration   

Exterior Uses
As Building Stone, Garden Decoration, Paving Stone   
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Gold and Silver production, Manufacture of Magnesium and Dolomite Refractories   

Medical Industry
Not Yet Used   
Not Applicable   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts, Monuments, Sculpture   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Creating Artwork   
Creating Artwork, Gemstone, Jewelry, Metallurgical Flux, Source of Magnesia (MgO)   

Types

Types
Not Available   
Endoskarns   

Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   
Host Rock for Lead, Zinc and Copper Deposits   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Not Used   

Petroglyphs
Used   
Not Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Kenyte is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.   
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Skarn is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.   

Composition
  
  

Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   
Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Au, CaO, Carbon Dioxide, Cu, Fe, MgO   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
Yes   
No   

Types of Weathering
Biological Weathering   
Not Applicable   

Erosion
Yes   
No   

Types of Erosion
Chemical Erosion, Coastal Erosion   
Not Applicable   

Properties

Physical Properties
  
  

Hardness
5.5-6   
6.5   

Grain Size
Fine Grained   
Fine Grained   

Fracture
Conchoidal to Uneven   
Irregular   

Streak
White, Greenish White or Grey   
Light to dark brown   

Porosity
Highly Porous   
Less Porous   

Luster
Greasy to Dull   
Waxy and Dull   

Compressive Strength
150.00 N/mm2   
14
Not Available   

Cleavage
Poor   
Slaty   

Toughness
Not Available   
2.4   

Specific Gravity
2.6   
2.86   

Transparency
Translucent to Opaque   
Opaque   

Density
2.6 g/cm3   
2.8-2.9 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
Not Available   
0.92 kJ/Kg K   
10

Resistance
Heat Resistant, Impact Resistant, Wear Resistant   
Heat Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   
China, India, Russia, Saudi Arabia, South Korea, Sri Lanka   

Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   
South Africa, Western Africa   

Europe
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden   
United Kingdom   

Others
Greenland   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, USA   
Canada   

South America
Brazil, Chile, Colombia, Uruguay, Venezuela   
Brazil, Colombia, Paraguay   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia   
Central Australia, Western Australia   

Definition >>
<< All

Kenyte vs Skarn Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Kenyte and Skarn Reserves. Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix. Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Kenyte vs Skarn information and Kenyte vs Skarn characteristics in the upcoming sections.

Compare Igneous Rocks

Kenyte vs Skarn Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Kenyte vs Skarn characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Kenyte and Properties of Skarn. Learn more about Kenyte vs Skarn in the next section. The interior uses of Kenyte include Decorative aggregates, Entryways, Homes, Interior decoration and Kitchens whereas the interior uses of Skarn include Decorative aggregates, Entryways and Interior decoration. Due to some exceptional properties of Kenyte and Skarn, they have various applications in construction industry. The uses of Kenyte in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Skarn include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Gold and silver production, Manufacture of magnesium and dolomite refractories.

More about Kenyte and Skarn

Here you can know more about Kenyte and Skarn. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Kenyte and Skarn consists of mineral content and compound content. The mineral content of Kenyte includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Skarn includes Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite. You can also check out the list of all Igneous Rocks. When we have to compare Kenyte vs Skarn, the texture, color and appearance plays an important role in determining the type of rock. Kenyte is available in brown, buff, cream, green, grey, pink, white colors whereas, Skarn is available in black, brown, colourless, green, grey, white colors. Appearance of Kenyte is Banded and Foilated and that of Skarn is Dull. Properties of rock is another aspect for Kenyte vs Skarn. The hardness of Kenyte is 5.5-6 and that of Skarn is 6.5. The types of Kenyte are Not Available whereas types of Skarn are Endoskarns. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Kenyte is white, greenish white or grey while that of Skarn is light to dark brown. The specific heat capacity of Kenyte is Not Available and that of Skarn is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Kenyte is heat resistant, impact resistant, wear resistant whereas Skarn is heat resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks