Home
Compare Rocks


Kenyte vs Phyllite


Phyllite vs Kenyte


Definition

Definition
Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix   
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks   

History
  
  

Origin
Mount Kenya   
Unknown   

Discoverer
J. W. Gregory   
Unknown   

Etymology
From the mountain ranges- Mount Kenya and is named by J. W. Gregory in 1900   
From Greek phullon leaf + -ite1   

Class
Igneous Rocks   
Metamorphic Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Soft Rock   

Family
  
  

Group
Not Applicable   
Not Applicable   

Other Categories
Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   

Texture

Texture
Glassy, Granular   
Phyllitic Sheen, Slaty   

Color
Brown, Buff, Cream, Green, Grey, Pink, White   
Black to Grey, Light Greenish Grey   

Maintenance
More   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
No   

Scratch Resistant
Yes   
No   

Stain Resistant
No   
No   

Wind Resistant
No   
No   

Acid Resistant
No   
No   

Appearance
Banded and Foilated   
Crinkled or Wavy   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Entryways, Homes, Interior Decoration, Kitchens   
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration   

Exterior Uses
As Building Stone, Garden Decoration, Paving Stone   
As Building Stone, As Facing Stone, Garden Decoration   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts, Sculpture   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Creating Artwork   
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates   

Types

Types
Not Available   
Not Available   

Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny   

Archaeological Significance
  
  

Monuments
Used   
Not Yet Used   

Famous Monuments
Data Not Available   
Not Applicable   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Kenyte is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.   
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.   

Composition
  
  

Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
CaO, Carbon Dioxide, MgO   

Transformation
  
  

Metamorphism
Yes   
No   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism   
Not Applicable   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Coastal Erosion   
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6   
1-2   

Grain Size
Fine Grained   
Medium to Fine Coarse Grained   

Fracture
Conchoidal to Uneven   
Conchoidal   

Streak
White, Greenish White or Grey   
White   

Porosity
Highly Porous   
Highly Porous   

Luster
Greasy to Dull   
Phyllitic   

Compressive Strength
150.00 N/mm2   
14
Not Available   

Cleavage
Poor   
Crenulation and Pervasive   

Toughness
Not Available   
1.2   

Specific Gravity
2.6   
2.72-2.73   

Transparency
Translucent to Opaque   
Opaque   

Density
2.6 g/cm3   
2.18-3.3 g/cm3   

Thermal Properties
  
  

Resistance
Heat Resistant, Impact Resistant, Wear Resistant   
Heat Resistant, Pressure Resistant, Water Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam   

Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   
Egypt, Ethiopia, Morocco, Nigeria, South Africa   

Europe
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden   
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland   

Others
Greenland   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, USA   
Canada, Costa Rica, Cuba, Mexico, Panama, USA   

South America
Brazil, Chile, Colombia, Uruguay, Venezuela   
Brazil, Colombia, Guyana   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia   
New South Wales, New Zealand, Queensland   

Definition >>
<< All

Kenyte vs Phyllite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Kenyte and Phyllite Reserves. Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Kenyte vs Phyllite information and Kenyte vs Phyllite characteristics in the upcoming sections.

Compare Igneous Rocks

Kenyte vs Phyllite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Kenyte vs Phyllite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Kenyte and Properties of Phyllite. Learn more about Kenyte vs Phyllite in the next section. The interior uses of Kenyte include Decorative aggregates, Entryways, Homes, Interior decoration and Kitchens whereas the interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Kenyte and Phyllite, they have various applications in construction industry. The uses of Kenyte in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Phyllite include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone.

More about Kenyte and Phyllite

Here you can know more about Kenyte and Phyllite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Kenyte and Phyllite consists of mineral content and compound content. The mineral content of Kenyte includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Kenyte vs Phyllite, the texture, color and appearance plays an important role in determining the type of rock. Kenyte is available in brown, buff, cream, green, grey, pink, white colors whereas, Phyllite is available in black to grey, light greenish grey colors. Appearance of Kenyte is Banded and Foilated and that of Phyllite is Crinkled or Wavy. Properties of rock is another aspect for Kenyte vs Phyllite. The hardness of Kenyte is 5.5-6 and that of Phyllite is 1-2. The types of Kenyte are Not Available whereas types of Phyllite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Kenyte and Phyllite is white, greenish white or grey. The specific heat capacity of Kenyte is Not Available and that of Phyllite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Kenyte is heat resistant, impact resistant, wear resistant whereas Phyllite is heat resistant, pressure resistant, water resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks