Home
Compare Rocks


Jasperoid and Syenite


Syenite and Jasperoid


Definition

Definition
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks   
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals   

History
  
  

Origin
USA   
Unknown   

Discoverer
Unknown   
Unknown   

Etymology
From silica, the main mineral content of Jasperoid   
From French syénite, from Latin Syenites (lapis ) (stone) of Syene   

Class
Sedimentary Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Not Applicable   
Plutonic   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   

Texture

Texture
Earthy   
Earthy   

Color
Black, Brown, Colourless, Green, Grey, Pink, White   
Brown, Buff, Cream, Green, Grey, Pink, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
No   

Wind Resistant
No   
Yes   

Acid Resistant
No   
Yes   

Appearance
Glassy or Pearly   
Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration   
Flooring, Homes, Hotels, Interior Decoration   

Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone   
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock   
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   

Medical Industry
Taken as a Supplement for Calcium or Magnesium   
Not Yet Used   

Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture   
Artifacts, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   
Cemetery Markers, Creating Artwork   

Types

Types
Not Available   
Shonkinite   

Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits   
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Present   
Absent   

Formation

Formation
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.   
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   

Composition
  
  

Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides   
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz   

Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
No   
Yes   

Types of Weathering
Not Applicable   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
No   
Yes   

Types of Erosion
Not Applicable   
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
3.5-4   
5.5-6   

Grain Size
Medium to Fine Coarse Grained   
Medium to Fine Coarse Grained   

Fracture
Conchoidal   
Not Available   

Streak
White   
White   

Porosity
Less Porous   
Less Porous   

Luster
Vitreous and Pearly   
Subvitreous to Dull   

Compressive Strength
140.00 N/mm2   
15
150.00 N/mm2   
14

Cleavage
Perfect   
Perfect   

Toughness
1   
Not Available   

Specific Gravity
2.8-3   
2.6-2.7   

Transparency
Transparent to Translucent   
Opaque   

Density
2.8-2.9 g/cm3   
2.6-2.8 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.92 kJ/Kg K   
10
0.92 kJ/Kg K   
10

Resistance
Heat Resistant, Pressure Resistant, Wear Resistant   
Heat Resistant, Impact Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India   
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam   

Africa
Morocco, Namibia   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
Austria, Italy, Romania, Spain, Switzerland   
Bulgaria, England, Germany, Norway, Romania, Switzerland   

Others
Not Yet Found   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Mexico, USA   
USA   

South America
Brazil, Colombia   
Brazil, Chile   

Deposits in Oceania Continent
  
  

Australia
New South Wales, Queensland, Yorke Peninsula   
New Zealand, Queensland, South Australia, Western Australia   

Summary >>
<< Reserves

All about Jasperoid and Syenite Properties

Know all about Jasperoid and Syenite properties here. All properties of rocks are important as they define the type of rock and its application. Jasperoid belongs to Sedimentary Rocks while Syenite belongs to Igneous Rocks.Texture of Jasperoid is Earthy whereas that of Syenite is Earthy. Jasperoid appears Glassy or Pearly and Syenite appears Banded and Foilated. The luster of Jasperoid is vitreous and pearly while that of Syenite is subvitreous to dull. Jasperoid is available in black, brown, colourless, green, grey, pink, white colors whereas Syenite is available in brown, buff, cream, green, grey, pink, white colors. The commercial uses of Jasperoid are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo) and that of Syenite are cemetery markers, creating artwork.

Compare Sedimentary Rocks

Fossil Rocks

Fossil Rocks

» More Fossil Rocks

Compare Sedimentary Rocks

» More Compare Sedimentary Rocks