×

Gneiss
Gneiss

Vogesite
Vogesite



ADD
Compare
X
Gneiss
X
Vogesite

Gneiss vs Vogesite

Add ⊕
1 Definition
1.1 Definition
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
Vogesite is a porphyritic alkaline igneous rock and is a variety of Lamprophyre which is dominated by essential amphibole, usually hornblende, and potassic feldspar
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Middle High German verb gneist (to spark; so called because the rock glitters)
From the variety of Lamprophyre Greek lampros bright and shining + porphureos purple
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded, Foliated, Platy
Porphyritic
2.2 Color
Black, Brown, Pink, Red, White
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Foliated
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite
4.2 Features
Generally rough to touch, Is one of the oldest rock
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Konark Sun Temple in India, Washington Monument, US
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
Vogesite formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
75-6
Coal
1 7
6.1.2 Grain Size
Medium to Coarse Grained
Fine to Coarse Grained
6.1.3 Fracture
Irregular
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Very Less Porous
6.1.6 Luster
Dull
Subvitreous to Dull
6.1.7 Compressive Strength
125.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Poor
Conchoidal
6.1.9 Toughness
1.2
Not Available
6.1.10 Specific Gravity
2.5-2.72.86-2.87
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Translucent to Opaque
6.1.12 Density
2.6-2.9 g/cm32.95-2.96 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NANA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
Russia
7.1.2 Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada, Mexico, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria
New South Wales, New Zealand, Queensland, South Australia, Western Australia

Gneiss vs Vogesite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Gneiss and Vogesite Reserves. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. Vogesite is a porphyritic alkaline igneous rock and is a variety of Lamprophyre which is dominated by essential amphibole, usually hornblende, and potassic feldspar. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Gneiss vs Vogesite information and Gneiss vs Vogesite characteristics in the upcoming sections.

Gneiss vs Vogesite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Gneiss vs Vogesite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Gneiss and Properties of Vogesite. Learn more about Gneiss vs Vogesite in the next section. The interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Vogesite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Gneiss and Vogesite, they have various applications in construction industry. The uses of Gneiss in construction industry include As dimension stone and that of Vogesite include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Gneiss and Vogesite

Here you can know more about Gneiss and Vogesite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Gneiss and Vogesite consists of mineral content and compound content. The mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon and mineral content of Vogesite includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Metamorphic Rocks. When we have to compare Gneiss vs Vogesite, the texture, color and appearance plays an important role in determining the type of rock. Gneiss is available in black, brown, pink, red, white colors whereas, Vogesite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Gneiss is Foliated and that of Vogesite is Dull, Banded and Foilated. Properties of rock is another aspect for Gneiss vs Vogesite. The hardness of Gneiss is 7 and that of Vogesite is 5-6. The types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss. whereas types of Vogesite are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Gneiss and Vogesite is white. The specific heat capacity of Gneiss is Not Available and that of Vogesite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant whereas Vogesite is heat resistant, impact resistant.