Home
×

Gneiss
Gneiss

Suevite
Suevite



ADD
Compare
X
Gneiss
X
Suevite

Gneiss vs Suevite

Add ⊕
1 Definition
1.1 Definition
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
During the impact melted material forming a breccia containing glass and crystal or lithic fragments together form Suevite rock.
1.2 History
1.2.1 Origin
Unknown
Canada, Germany
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Middle High German verb gneist (to spark; so called because the rock glitters)
No etymologies found
1.4 Class
Metamorphic Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded, Foliated, Platy
Earthy
2.2 Color
Black, Brown, Pink, Red, White
Black, Brown, Colourless, Green, Grey, Pink
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Foliated
Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Applicable
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Source of Magnesia (MgO)
4 Types
4.1 Types
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
Phyllosilicates, Calcite
4.2 Features
Generally rough to touch, Is one of the oldest rock
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Konark Sun Temple in India, Washington Monument, US
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
Suevite is a metamorphic rock consisting partly of melted material, typically forming a breccia containing glass and crystal or lithic fragments, formed during an impact event.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
Coesite, Quartz, Stishovite
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Carbon Dioxide, MgO
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
5.5
6.1.2 Grain Size
Medium to Coarse Grained
Coarse Grained
6.1.3 Fracture
Irregular
Uneven
6.1.4 Streak
White
Light to dark brown
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Dull
Earthy
6.1.7 Compressive Strength
Flint
125.00 N/mm2
Rank: 17 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Irregular
6.1.9 Toughness
1.2
Not Available
6.1.10 Specific Gravity
2.5-2.7
2.86
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6-2.9 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
Not Yet Found
7.1.2 Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
Not Yet Found
7.1.3 Europe
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
England, France, Germany, Great Britain, Netherlands, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Not Yet Found
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria
Not Yet Found

Gneiss vs Suevite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Gneiss and Suevite Reserves. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. During the impact melted material forming a breccia containing glass and crystal or lithic fragments together form Suevite rock.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Gneiss vs Suevite information and Gneiss vs Suevite characteristics in the upcoming sections.

Gneiss vs Suevite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Gneiss vs Suevite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Gneiss and Properties of Suevite. Learn more about Gneiss vs Suevite in the next section. The interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Suevite include Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Gneiss and Suevite, they have various applications in construction industry. The uses of Gneiss in construction industry include As dimension stone and that of Suevite include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Gneiss and Suevite

Here you can know more about Gneiss and Suevite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Gneiss and Suevite consists of mineral content and compound content. The mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon and mineral content of Suevite includes Coesite, Quartz, Stishovite. You can also check out the list of all Metamorphic Rocks. When we have to compare Gneiss vs Suevite, the texture, color and appearance plays an important role in determining the type of rock. Gneiss is available in black, brown, pink, red, white colors whereas, Suevite is available in black, brown, colourless, green, grey, pink colors. Appearance of Gneiss is Foliated and that of Suevite is Banded. Properties of rock is another aspect for Gneiss vs Suevite. The hardness of Gneiss is 7 and that of Suevite is 5.5. The types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss. whereas types of Suevite are Phyllosilicates, Calcite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Gneiss is white while that of Suevite is light to dark brown. The specific heat capacity of Gneiss is Not Available and that of Suevite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant whereas Suevite is heat resistant.