1 Formation
1.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Pseudotachylite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Migmatites form by high temperature regional and thermal metamorphism of protolith rocks where rocks melt partially due to high temperature.
1.2 Composition
1.2.1 Mineral Content
Iron Oxides, Pyroxene, Quartz, Stishovite, Sulfides
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
1.2.2 Compound Content
Carbon Dioxide, Silicon Dioxide, Sulfur Dioxide, Sulphur
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
1.3 Transformation
1.3.1 Metamorphism
1.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
1.3.3 Weathering
1.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
1.3.5 Erosion
1.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Glacier Erosion, Water Erosion, Wind Erosion