×

Epidosite
Epidosite

Oolite
Oolite



ADD
Compare
X
Epidosite
X
Oolite

Epidosite vs Oolite

Add ⊕
1 Definition
1.1 Definition
Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt
Oolite is a sedimentary rock formed from ooids, spherical grains which are composed of concentric layers of calcite
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
Not Available
From oo- + -lite, after German Oolit. A rock consisting of fine grains of carbonate of lime
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
Clastic or Non-Clastic
2.2 Color
Black, Brown, Light to Dark Grey
Black, Blue, Brown, Cream, Green, Grey, Pink, Red, Silver, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Dull and Soft
Rounded and Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
Cement Manufacture, Cobblestones, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
Creating Artwork, Jewelry, Used in aquariums
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
Not Available
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Available in lots of colors, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Epidosite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Oolites form when layers of calcite are deposited around a sand grain or fossil piece and are rolled around in calm water, which makes them round.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, FeO, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
63-4
Coal
1 7
6.1.2 Grain Size
Fine to Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Not Available
Pearly to Shiny
6.1.7 Compressive Strength
NANA
Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Non-Existent
6.1.9 Toughness
2.3
1
6.1.10 Specific Gravity
2.8-3Not Available
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not AvailableNot Available
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NANA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
7.1.2 Africa
South Africa
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
7.1.3 Europe
Iceland
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula

Epidosite vs Oolite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Epidosite and Oolite Reserves. Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt. Oolite is a sedimentary rock formed from ooids, spherical grains which are composed of concentric layers of calcite. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Epidosite vs Oolite information and Epidosite vs Oolite characteristics in the upcoming sections.

Epidosite vs Oolite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Epidosite vs Oolite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Epidosite and Properties of Oolite. Learn more about Epidosite vs Oolite in the next section. The interior uses of Epidosite include Decorative aggregates, Floor tiles, Homes, Hotels and Interior decoration whereas the interior uses of Oolite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Epidosite and Oolite, they have various applications in construction industry. The uses of Epidosite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Oolite include Cement manufacture, Cobblestones, Landscaping.

More about Epidosite and Oolite

Here you can know more about Epidosite and Oolite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Epidosite and Oolite consists of mineral content and compound content. The mineral content of Epidosite includes Olivine, Plagioclase, Pyroxene and mineral content of Oolite includes Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt. You can also check out the list of all Igneous Rocks. When we have to compare Epidosite vs Oolite, the texture, color and appearance plays an important role in determining the type of rock. Epidosite is available in black, brown, light to dark grey colors whereas, Oolite is available in black, blue, brown, cream, green, grey, pink, red, silver, white, yellow colors. Appearance of Epidosite is Dull and Soft and that of Oolite is Rounded and Rough. Properties of rock is another aspect for Epidosite vs Oolite. The hardness of Epidosite is 6 and that of Oolite is 3-4. The types of Epidosite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite whereas types of Oolite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Epidosite is white to grey while that of Oolite is white. The specific heat capacity of Epidosite is Not Available and that of Oolite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Epidosite is heat resistant, pressure resistant, wear resistant whereas Oolite is heat resistant, wear resistant.