×

Diabase
Diabase

Migmatite
Migmatite



ADD
Compare
X
Diabase
X
Migmatite

Diabase and Migmatite

Add ⊕
1 Definition
1.1 Definition
Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar
Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components
1.2 History
1.2.1 Origin
Germany
Southern Alps, France
1.2.2 Discoverer
Christian Leopold von Buch
Jakob Sederholm
1.3 Etymology
From Greek di + base
From the Greek word migma which means a mixture
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic, Granular
Foliated
2.2 Color
Dark Grey to Black
Black, Bluish - Grey, Brown, Brown- Black, Dark Greenish - Grey, Dark Grey to Black
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Vesicular
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration, Kitchens
Countertops, Flooring, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Cemetery Markers, Jewelry, Tombstones, Used to manufracture paperweights and bookends
4 Types
4.1 Types
Not Available
Diatexites and Metatexites
4.2 Features
Smooth to touch
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Stonehenge in English county of Wiltshire
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Diabase forms when molten igneous rock is squeezed up into a vertical crack in other rocks, the crack is usually forced apart and the molten rock cools in the space to form a tabular igneous intrusion cutting across the surrounding rocks and is known as a dike.
Migmatites form by high temperature regional and thermal metamorphism of protolith rocks where rocks melt partially due to high temperature.
5.2 Composition
5.2.1 Mineral Content
Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
75.5-6.5
Coal
1 7
6.1.2 Grain Size
Fine to Medium Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
Black
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Not Available
Dull to Pearly to Subvitreous
6.1.7 Compressive Strength
225.00 N/mm2NA
What Is Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Poor
6.1.9 Toughness
1.6
1.2
6.1.10 Specific Gravity
2.86-2.872.65-2.75
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.7-3.3 g/cm3Not Available
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NANA
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
7.1.2 Africa
South Africa, Tanzania
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Sweden, Switzerland, Ukraine, United Kingdom
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Argentina, Brazil, Colombia, Venezuela
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New Zealand, Queensland, Western Australia
New South Wales, New Zealand, Queensland, Victoria

All about Diabase and Migmatite Properties

Know all about Diabase and Migmatite properties here. All properties of rocks are important as they define the type of rock and its application. Diabase belongs to Igneous Rocks while Migmatite belongs to Metamorphic Rocks.Texture of Diabase is Aphanitic, Granular whereas that of Migmatite is Foliated. Diabase appears Vesicular and Migmatite appears Dull, Banded and Foilated. The luster of Diabase is not available while that of Migmatite is dull to pearly to subvitreous. Diabase is available in dark grey to black colors whereas Migmatite is available in black, bluish - grey, brown, brown- black, dark greenish - grey, dark grey to black colors. The commercial uses of Diabase are an oil and gas reservoir, cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones and that of Migmatite are cemetery markers, jewelry, tombstones, used to manufracture paperweights and bookends.