Home
×

Diabase
Diabase

Dacite
Dacite



ADD
Compare
X
Diabase
X
Dacite

Diabase and Dacite

Add ⊕
1 Definition
1.1 Definition
Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar
Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite
1.2 History
1.2.1 Origin
Germany
Romania and Moldova, Europe
1.2.2 Discoverer
Christian Leopold von Buch
Unknown
1.3 Etymology
From Greek di + base
From Dacia, a province of the Roman Empire which lay between the Danube River and Carpathian Mountains where the rock was first described
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic, Granular
Aphanitic to Porphyritic
2.2 Color
Dark Grey to Black
Bluish - Grey, Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Vesicular
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration, Kitchens
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
As Dimension Stone, Construction Aggregate, for Road Aggregate, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Not Available
Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite
4.2 Features
Smooth to touch
Host Rock for Lead, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Stonehenge in English county of Wiltshire
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Diabase forms when molten igneous rock is squeezed up into a vertical crack in other rocks, the crack is usually forced apart and the molten rock cools in the space to form a tabular igneous intrusion cutting across the surrounding rocks and is known as a dike.
Dacitic magma is formed by the subduction of young oceanic crust under a thick felsic continental plate. Further, the Oceanic crust is hydrothermally altered as quartz and sodium are added.
5.2 Composition
5.2.1 Mineral Content
Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Ca, Fe, Potassium Oxide, Mg, Potassium, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
2-2.25
6.1.2 Grain Size
Fine to Medium Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Not Available
Subvitreous to Dull
6.1.7 Compressive Strength
What Is Flint
225.00 N/mm2
Rank: 7 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
1.6
Not Available
6.1.10 Specific Gravity
2.86-2.87
2.86-2.87
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.7-3.3 g/cm3
2.77-2.771 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India
Not Yet Found
7.1.2 Africa
South Africa, Tanzania
Not Yet Found
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
France, Greece, Romania, Scotland, Spain
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Argentina, Brazil, Colombia, Venezuela
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New Zealand, Queensland, Western Australia
New Zealand, South Australia, Western Australia

All about Diabase and Dacite Properties

Know all about Diabase and Dacite properties here. All properties of rocks are important as they define the type of rock and its application. Diabase and Dacite belong to Igneous Rocks.Texture of Diabase is Aphanitic, Granular whereas that of Dacite is Aphanitic to Porphyritic. Diabase appears Vesicular and Dacite appears Vesicular. The luster of Diabase is not available while that of Dacite is subvitreous to dull. Diabase is available in dark grey to black colors whereas Dacite is available in bluish - grey, brown, grey, light to dark grey colors. The commercial uses of Diabase are an oil and gas reservoir, cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones and that of Dacite are commemorative tablets, creating artwork.