Home
×

Benmoreite
Benmoreite

Peridotite
Peridotite



ADD
Compare
X
Benmoreite
X
Peridotite

Benmoreite vs Peridotite

1 Definition
1.1 Definition
An iron rich extrusive rock found as a member of the alkali basalt magma series
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
1.2 History
1.2.1 Origin
Isle of Mull, Scotland
Pike County, U.S
1.2.2 Discoverer
Ben More
Unknown
1.3 Etymology
From the name of discoverer, Ben More
From French, from peridot +‎ -ite
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Trachytic, Vesicular
Phaneritic
2.2 Color
Black, Brown, Light to Dark Grey
Dark Greenish - Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough and Dull
Rough and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As Dimension Stone, Cobblestones
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork, Curling
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Benmoreite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
5.5-6
6.1.2 Grain Size
Fine Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Earthy
Shiny
6.1.7 Compressive Strength
Flint
37.40 N/mm2
Rank: 28 (Overall)
107.55 N/mm2
Rank: 19 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Imperfect
6.1.9 Toughness
2.3
2.1
6.1.10 Specific Gravity
2.8-3
3-3.01
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.9-3.1 g/cm3
3.1-3.4 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
1.26 kJ/Kg K
Rank: 5 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
7.1.2 Africa
South Africa
Morocco, South Africa
7.1.3 Europe
Iceland
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Western Australia

Benmoreite vs Peridotite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Benmoreite and Peridotite Reserves. An iron rich extrusive rock found as a member of the alkali basalt magma series. Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Benmoreite vs Peridotite information and Benmoreite vs Peridotite characteristics in the upcoming sections.

Benmoreite vs Peridotite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Benmoreite vs Peridotite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Benmoreite and Properties of Peridotite. Learn more about Benmoreite vs Peridotite in the next section. The interior uses of Benmoreite include Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Peridotite include Decorative aggregates and Interior decoration. Due to some exceptional properties of Benmoreite and Peridotite, they have various applications in construction industry. The uses of Benmoreite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Peridotite include As dimension stone, Cobblestones.

More about Benmoreite and Peridotite

Here you can know more about Benmoreite and Peridotite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Benmoreite and Peridotite consists of mineral content and compound content. The mineral content of Benmoreite includes Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase and mineral content of Peridotite includes Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Benmoreite vs Peridotite, the texture, color and appearance plays an important role in determining the type of rock. Benmoreite is available in black, brown, light to dark grey colors whereas, Peridotite is available in dark greenish - grey colors. Appearance of Benmoreite is Rough and Dull and that of Peridotite is Rough and Shiny. Properties of rock is another aspect for Benmoreite vs Peridotite. The hardness of Benmoreite is 6 and that of Peridotite is 5.5-6. The types of Benmoreite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt whereas types of Peridotite are Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Benmoreite is black while that of Peridotite is white. The specific heat capacity of Benmoreite is 0.84 kJ/Kg K and that of Peridotite is 1.26 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Benmoreite is heat resistant, pressure resistant, wear resistant whereas Peridotite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×