×

Basaltic Trachyandesite
Basaltic Trachyandesite

Latite
Latite



ADD
Compare
X
Basaltic Trachyandesite
X
Latite

Basaltic Trachyandesite and Latite

1 Definition
1.1 Definition
Basaltic Trachyandesite is an extrusive igneous rock which is a type of Basalt rock and is formed by the rapid cooling of basaltic lava exposed at or very near the Earth's surface
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
1.2 History
1.2.1 Origin
Unknown
Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From its mineral and compound content and its relation with Basalt and Andesite rock
From the Latin word latium
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
Aphanitic to Porphyritic
2.2 Color
Black, Brown, Light to Dark Grey
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Dull and Soft
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing, Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
Rhomb porphyries
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Basaltic Trachandesite is a fine-grained, hard rock that forms when bits of lava shoot out of volcanoes.
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Alkali feldspar, Biotite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Cl, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Not Available
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
65-5.5
Coal
1 7
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Not Available
Subvitreous to Dull
6.1.7 Compressive Strength
37.50 N/mm2310.00 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
2.3
2.7
6.1.10 Specific Gravity
2.8-32.86
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.9-3.1 g/cm32.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.84 kJ/Kg K0.92 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Not Yet Found
7.1.2 Africa
South Africa
Not Yet Found
7.1.3 Europe
Iceland
Bulgaria
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Not Yet Found

All about Basaltic Trachyandesite and Latite Properties

Know all about Basaltic Trachyandesite and Latite properties here. All properties of rocks are important as they define the type of rock and its application. Basaltic Trachyandesite and Latite belong to Igneous Rocks.Texture of Basaltic Trachyandesite is Glassy, Massive, Porphyritic, Scoriaceous, Vesicular whereas that of Latite is Aphanitic to Porphyritic. Basaltic Trachyandesite appears Dull and Soft and Latite appears Rough. The luster of Basaltic Trachyandesite is not available while that of Latite is subvitreous to dull. Basaltic Trachyandesite is available in black, brown, light to dark grey colors whereas Latite is available in black, brown, colourless, green, grey, pink, white colors. The commercial uses of Basaltic Trachyandesite are an oil and gas reservoir, commemorative tablets, creating artwork and that of Latite are an oil and gas reservoir, as a feed additive for livestock, metallurgical flux, soil conditioner, source of magnesia (mgo).