Home
×

Basalt
Basalt

Phyllite
Phyllite



ADD
Compare
X
Basalt
X
Phyllite

Basalt vs Phyllite

Add ⊕
1 Definition
1.1 Definition
Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
1.2 History
1.2.1 Origin
Egypt
Unknown
1.2.2 Discoverer
Georgius Agricola
Unknown
1.3 Etymology
From Late Latin Basaltes (variant of basanites ), very hard stone, which was imported from Ancient Greek Basanites
From Greek phullon leaf + -ite1
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
Phyllitic Sheen, Slaty
2.2 Color
Black, Brown, Light to Dark Grey
Black to Grey, Light Greenish Grey
2.3 Maintenance
More
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Crinkled or Wavy
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing, Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, As Dimension Stone, Cobblestones, Cutting Tool, Rail Track Ballast, Roadstone
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork, Used in aquariums
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
Not Available
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Easter Island in the Polynesian Triangle, Pacific Ocean, Gateway of India in Mumbai, India, Gol Gumbaz in Karnataka, India
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Basalt forms when lava reaches the Earth's surface near an active volcano. The temperature of lava is between 1100 to 1250° C when it gets to the surface.
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Carbon Dioxide, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Contact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Not Available
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
1-2
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Not Available
Phyllitic
6.1.7 Compressive Strength
Flint
37.40 N/mm2
Rank: 28 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Crenulation and Pervasive
6.1.9 Toughness
2.3
1.2
6.1.10 Specific Gravity
2.8-3
2.72-2.73
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.9-3.1 g/cm3
2.18-3.3 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
7.1.2 Africa
South Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
7.1.3 Europe
Iceland
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Brazil
Brazil, Colombia, Guyana
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, New Zealand, Queensland

Basalt vs Phyllite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Basalt and Phyllite Reserves. Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Basalt vs Phyllite information and Basalt vs Phyllite characteristics in the upcoming sections.

Basalt vs Phyllite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Basalt vs Phyllite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Basalt and Properties of Phyllite. Learn more about Basalt vs Phyllite in the next section. The interior uses of Basalt include Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Basalt and Phyllite, they have various applications in construction industry. The uses of Basalt in construction industry include Arrowheads, As dimension stone, Cobblestones, Cutting tool, Rail track ballast, Roadstone and that of Phyllite include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone.

More about Basalt and Phyllite

Here you can know more about Basalt and Phyllite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Basalt and Phyllite consists of mineral content and compound content. The mineral content of Basalt includes Olivine, Plagioclase, Pyroxene and mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Basalt vs Phyllite, the texture, color and appearance plays an important role in determining the type of rock. Basalt is available in black, brown, light to dark grey colors whereas, Phyllite is available in black to grey, light greenish grey colors. Appearance of Basalt is Dull and Soft and that of Phyllite is Crinkled or Wavy. Properties of rock is another aspect for Basalt vs Phyllite. The hardness of Basalt is 6 and that of Phyllite is 1-2. The types of Basalt are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite whereas types of Phyllite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Basalt is white to grey while that of Phyllite is white. The specific heat capacity of Basalt is 0.84 kJ/Kg K and that of Phyllite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Basalt is heat resistant, pressure resistant, wear resistant whereas Phyllite is heat resistant, pressure resistant, water resistant.

Let Others Know
×