Home
×

Adakite
Adakite

Syenite
Syenite



ADD
Compare
X
Adakite
X
Syenite

Adakite vs Syenite

Add ⊕
1 Definition
1.1 Definition
Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
1.2 History
1.2.1 Origin
Adak, Aleutian Islands
Unknown
1.2.2 Discoverer
Defant and Drummond
Unknown
1.3 Etymology
From Adak, Aleutian Islands
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Earthy
2.2 Color
Black, Brown, Light to Dark Grey
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Kitchens
Flooring, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Pottery, Used in aquariums
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Not Available
Shonkinite
4.2 Features
Has High structural resistance against erosion and climate, Host rock for Diamond, Very fine grained rock
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Adakite rocks are formed when the hydrous fluids are released from minerals that break down in metamorphosed basalt, and rise into the mantle they initiate partial melting.
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Aluminium Oxide, MgO, Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Sea Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
5.5-6
6.1.2 Grain Size
Fine to Medium Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Grainy, Pearly and Vitreous
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
150.00 N/mm2
Rank: 14 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
Not Available
2.6-2.7
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not Available
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Ethiopia, Somalia, South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Iceland
Bulgaria, England, Germany, Norway, Romania, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Brazil, Chile
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Queensland, South Australia, Western Australia

Adakite vs Syenite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Adakite and Syenite Reserves. Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs. Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Adakite vs Syenite information and Adakite vs Syenite characteristics in the upcoming sections.

Adakite vs Syenite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Adakite vs Syenite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Adakite and Properties of Syenite. Learn more about Adakite vs Syenite in the next section. The interior uses of Adakite include Decorative aggregates, Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration. Due to some exceptional properties of Adakite and Syenite, they have various applications in construction industry. The uses of Adakite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Syenite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Adakite and Syenite

Here you can know more about Adakite and Syenite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Adakite and Syenite consists of mineral content and compound content. The mineral content of Adakite includes Olivine, Plagioclase, Pyroxene and mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Adakite vs Syenite, the texture, color and appearance plays an important role in determining the type of rock. Adakite is available in black, brown, light to dark grey colors whereas, Syenite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Adakite is Dull and Soft and that of Syenite is Banded and Foilated. Properties of rock is another aspect for Adakite vs Syenite. The hardness of Adakite is 3-4 and that of Syenite is 5.5-6. The types of Adakite are Not Available whereas types of Syenite are Shonkinite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Adakite is bluish black while that of Syenite is white. The specific heat capacity of Adakite is Not Available and that of Syenite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Adakite is heat resistant, pressure resistant, wear resistant whereas Syenite is heat resistant, impact resistant, wear resistant.

Let Others Know
×