Home
×

Adakite
Adakite

Phonolite
Phonolite



ADD
Compare
X
Adakite
X
Phonolite

Adakite vs Phonolite

Add ⊕
1 Definition
1.1 Definition
Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs
Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic
1.2 History
1.2.1 Origin
Adak, Aleutian Islands
Unknown
1.2.2 Discoverer
Defant and Drummond
Unknown
1.3 Etymology
From Adak, Aleutian Islands
From the Greek meaning sounding stone because of the metallic sound it produces if an unfractured plate is hit
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Granular
2.2 Color
Black, Brown, Light to Dark Grey
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Kitchens
Countertops, Decorative Aggregates, Flooring, Homes
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Pottery, Used in aquariums
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Not Available
Kenyte
4.2 Features
Has High structural resistance against erosion and climate, Host rock for Diamond, Very fine grained rock
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Adakite rocks are formed when the hydrous fluids are released from minerals that break down in metamorphosed basalt, and rise into the mantle they initiate partial melting.
Phonolite are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
Aluminium Oxide, MgO, Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Sea Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
5.5-6
6.1.2 Grain Size
Fine to Medium Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal to Uneven
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Grainy, Pearly and Vitreous
Greasy to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
150.00 N/mm2
Rank: 14 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Poor
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
Not Available
2.6
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
Not Available
2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
7.1.2 Africa
Ethiopia, Somalia, South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Iceland
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil
Brazil, Chile, Colombia, Uruguay, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Queensland, South Australia, Tasmania, Western Australia

Adakite vs Phonolite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Adakite and Phonolite Reserves. Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs. Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Adakite vs Phonolite information and Adakite vs Phonolite characteristics in the upcoming sections.

Adakite vs Phonolite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Adakite vs Phonolite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Adakite and Properties of Phonolite. Learn more about Adakite vs Phonolite in the next section. The interior uses of Adakite include Decorative aggregates, Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Phonolite include Countertops, Decorative aggregates, Flooring and Homes. Due to some exceptional properties of Adakite and Phonolite, they have various applications in construction industry. The uses of Adakite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Phonolite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Adakite and Phonolite

Here you can know more about Adakite and Phonolite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Adakite and Phonolite consists of mineral content and compound content. The mineral content of Adakite includes Olivine, Plagioclase, Pyroxene and mineral content of Phonolite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Adakite vs Phonolite, the texture, color and appearance plays an important role in determining the type of rock. Adakite is available in black, brown, light to dark grey colors whereas, Phonolite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Adakite is Dull and Soft and that of Phonolite is Banded and Foilated. Properties of rock is another aspect for Adakite vs Phonolite. The hardness of Adakite is 3-4 and that of Phonolite is 5.5-6. The types of Adakite are Not Available whereas types of Phonolite are Kenyte. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Adakite is bluish black while that of Phonolite is white. The specific heat capacity of Adakite is Not Available and that of Phonolite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Adakite is heat resistant, pressure resistant, wear resistant whereas Phonolite is heat resistant, impact resistant, wear resistant.

Let Others Know
×