Home
×

Adakite
Adakite

Diorite
Diorite



ADD
Compare
X
Adakite
X
Diorite

Adakite vs Diorite

Add ⊕
1 Definition
1.1 Definition
Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs
Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene
1.2 History
1.2.1 Origin
Adak, Aleutian Islands
Unknown
1.2.2 Discoverer
Defant and Drummond
Unknown
1.3 Etymology
From Adak, Aleutian Islands
From early 19th century coined in French, formed irregularly from Greek diorizein distinguish
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Phaneritic
2.2 Color
Black, Brown, Light to Dark Grey
Black, Brown, Light to Dark Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Pottery, Used in aquariums
Creating Artwork, Curling
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Has High structural resistance against erosion and climate, Host rock for Diamond, Very fine grained rock
Typically speckled black and white.
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Adakite rocks are formed when the hydrous fluids are released from minerals that break down in metamorphosed basalt, and rise into the mantle they initiate partial melting.
Diorite is a coarse-grained intrusive igneous rock which contains large interlocking and randomly oriented crystals and forms when molten lava does not reach the Earth’s surface and cools down in the Earth’s crust.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
5.2.2 Compound Content
Aluminium Oxide, MgO, Silicon Dioxide
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Sea Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
6-7
6.1.2 Grain Size
Fine to Medium Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
Bluish Black
Bluish Black
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Grainy, Pearly and Vitreous
Shiny
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
225.00 N/mm2
Rank: 7 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
Not Available
2.1
6.1.10 Specific Gravity
Not Available
2.8-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not Available
2.8-3 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Not Yet Found
7.1.2 Africa
Ethiopia, Somalia, South Africa
Egypt
7.1.3 Europe
Iceland
Finland, Germany, Italy, Romania, Sweden, Turkey, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Western Australia

Adakite vs Diorite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Adakite and Diorite Reserves. Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs. Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Adakite vs Diorite information and Adakite vs Diorite characteristics in the upcoming sections.

Adakite vs Diorite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Adakite vs Diorite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Adakite and Properties of Diorite. Learn more about Adakite vs Diorite in the next section. The interior uses of Adakite include Decorative aggregates, Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Diorite include Decorative aggregates and Interior decoration. Due to some exceptional properties of Adakite and Diorite, they have various applications in construction industry. The uses of Adakite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Diorite include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate.

More about Adakite and Diorite

Here you can know more about Adakite and Diorite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Adakite and Diorite consists of mineral content and compound content. The mineral content of Adakite includes Olivine, Plagioclase, Pyroxene and mineral content of Diorite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Adakite vs Diorite, the texture, color and appearance plays an important role in determining the type of rock. Adakite is available in black, brown, light to dark grey colors whereas, Diorite is available in black, brown, light to dark grey, white colors. Appearance of Adakite is Dull and Soft and that of Diorite is Shiny. Properties of rock is another aspect for Adakite vs Diorite. The hardness of Adakite is 3-4 and that of Diorite is 6-7. The types of Adakite are Not Available whereas types of Diorite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Adakite and Diorite is bluish black. The specific heat capacity of Adakite is Not Available and that of Diorite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Adakite is heat resistant, pressure resistant, wear resistant whereas Diorite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×