Home
×

Shale
Shale

Breccia
Breccia



ADD
Compare
X
Shale
X
Breccia

Shale vs Breccia

Add ⊕
1 Definition
1.1 Definition
Shale is a fine-grained sedimentary rock which is formed by the compaction of silt and clay-size mineral particles
Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material
1.2 History
1.2.1 Origin
Unknown
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From German Schalstein laminated limestone, and Schalgebirge layer of stone in stratified rock. From Old English scealu in its base sense of- thing that divides or separate,
From Italian, literally gravel, Germanic origin and related to break
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic, Splintery
Brecciated, Clastic
2.2 Color
Black, Brown, Buff, Green, Grey, Red, Yellow
Beige, Black, Blue, Brown, Buff, Green, Grey, Orange, Pink, Purple, Red, Rust, White, Yellow
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Muddy
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Construction Aggregate, for Road Aggregate, Making natural cement, Raw material for the manufacture of mortar
As Dimension Stone, Construction Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Pottery
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Red Shale, Black Shale, Green Shale, Grey Shale and Yellow Shale
Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia
4.2 Features
Easily splits into thin plates, Generally rough to touch, Very fine grained rock
Available in Lots of Colors and Patterns, Clasts are smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Jantar Mantar in India
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Shale forms when very fine-grained clay particles are deposited in water which settle at the bottom of water bodies. They are later compacted hence forming shale.
Breccia is a clastic sedimentary rock which is composed of broken fragments of minerals or rock which are cemented together by a fine-grained matrix and it forms where broken, angular fragments of rock or mineral debris accumulate.
5.2 Composition
5.2.1 Mineral Content
Albite, Biotite, Calcite, Chert, Chlorite, Dolomite, Hematite, Micas, Muscovite or Illite, Pyrite, Quartz, Silica, Sulfides
Calcite, Clay, Feldspar, Phosphates, Quartz, Silica
5.2.2 Compound Content
Ca, Fe, Mg, Silicon Dioxide, Sodium
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, Potassium Oxide, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3
7
6.1.2 Grain Size
Very fine-grained
Medium to Coarse Grained
6.1.3 Fracture
Not Available
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Dull
Dull to Pearly
6.1.7 Compressive Strength
Flint
95.00 N/mm2
Rank: 20 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Non-Existent
6.1.9 Toughness
2.6
Not Available
6.1.10 Specific Gravity
2.2-2.8
2.86-2.87
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.4-2.8 g/cm3
0 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.39 kJ/Kg K
Rank: 23 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, China, India, Russia
China, India, Kazakhstan, Mongolia, Russia, South Korea, Uzbekistan
7.1.2 Africa
Ethiopia, Kenya, Morocco, South Africa, Tanzania
Namibia, Nigeria, South Africa
7.1.3 Europe
Austria, France, Germany, Greece, Italy, Romania, Scotland, Spain, Switzerland
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Barbados, Canada, Mexico, Panama, USA
7.2.2 South America
Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria, Western Australia
New South Wales, New Zealand

Shale vs Breccia Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Shale and Breccia Reserves. Shale is a fine-grained sedimentary rock which is formed by the compaction of silt and clay-size mineral particles. Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Shale vs Breccia information and Shale vs Breccia characteristics in the upcoming sections.

Shale vs Breccia Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Shale vs Breccia characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Shale and Properties of Breccia. Learn more about Shale vs Breccia in the next section. The interior uses of Shale include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Breccia include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels and Interior decoration. Due to some exceptional properties of Shale and Breccia, they have various applications in construction industry. The uses of Shale in construction industry include Cement manufacture, Construction aggregate, For road aggregate, Making natural cement, Raw material for the manufacture of mortar and that of Breccia include As dimension stone, Construction aggregate, Landscaping, Roadstone.

More about Shale and Breccia

Here you can know more about Shale and Breccia. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Shale and Breccia consists of mineral content and compound content. The mineral content of Shale includes Albite, Biotite, Calcite, Chert, Chlorite, Dolomite, Hematite, Micas, Muscovite or Illite, Pyrite, Quartz, Silica, Sulfides and mineral content of Breccia includes Calcite, Clay, Feldspar, Phosphates, Quartz, Silica. You can also check out the list of all Sedimentary Rocks. When we have to compare Shale vs Breccia, the texture, color and appearance plays an important role in determining the type of rock. Shale is available in black, brown, buff, green, grey, red, yellow colors whereas, Breccia is available in beige, black, blue, brown, buff, green, grey, orange, pink, purple, red, rust, white, yellow colors. Appearance of Shale is Muddy and that of Breccia is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Shale vs Breccia. The hardness of Shale is 3 and that of Breccia is 7. The types of Shale are Red Shale, Black Shale, Green Shale, Grey Shale and Yellow Shale whereas types of Breccia are Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Shale and Breccia is white. The specific heat capacity of Shale is 0.39 kJ/Kg K and that of Breccia is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Shale is heat resistant, impact resistant whereas Breccia is heat resistant, impact resistant, pressure resistant, wear resistant.

Let Others Know
×