Home
×

Quartzite
Quartzite

Migmatite
Migmatite



ADD
Compare
X
Quartzite
X
Migmatite

Quartzite vs Migmatite

1 Definition
1.1 Definition
Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone
Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components
1.2 History
1.2.1 Origin
Unknown
Southern Alps, France
1.2.2 Discoverer
Unknown
Jakob Sederholm
1.3 Etymology
From quartz + -ite
From the Greek word migma which means a mixture
1.4 Class
Metamorphic Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated, Granular
Foliated
2.2 Color
Black, Blue, Brown, Green, Light Grey, Purple, White, Yellow
Black, Bluish - Grey, Brown, Brown- Black, Dark Greenish - Grey, Dark Grey to Black
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Lustrous
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes
Countertops, Flooring, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, As Dimension Stone, Cement Manufacture, Construction Aggregate, Cutting Tool, for Road Aggregate, Making natural cement, Production of Glass and Ceramics, Rail Track Ballast, Roadstone
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As armour rock for sea walls, Cemetery Markers, Commemorative Tablets, In aquifers, Laboratory bench tops, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones, Used in aquariums
Cemetery Markers, Jewelry, Tombstones, Used to manufracture paperweights and bookends
4 Types
4.1 Types
Not Available
Diatexites and Metatexites
4.2 Features
Generally rough to touch, Is one of the oldest rock
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Quartzite forms from sandstone and the mineral quartz being put under extreme heat and pressure.
Migmatites form by high temperature regional and thermal metamorphism of protolith rocks where rocks melt partially due to high temperature.
5.2 Composition
5.2.1 Mineral Content
Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, MgO, Sodium Oxide, Silicon Dioxide
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
5.5-6.5
6.1.2 Grain Size
Medium Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Uneven, Splintery or Conchoidal
Irregular
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Vitreous
Dull to Pearly to Subvitreous
6.1.7 Compressive Strength
Flint
115.00 N/mm2
Rank: 18 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Indiscernible
Poor
6.1.9 Toughness
1.9
1.2
6.1.10 Specific Gravity
2.6-2.8
2.65-2.75
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.32-2.42 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.75 kJ/Kg K
Rank: 18 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Israel, Russia, South Korea, Thailand, Turkey
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
7.1.2 Africa
Ethiopia, Morocco, South Africa, Zimbabwe
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
7.1.3 Europe
England, Italy, Norway, Scotland, Sweden, United Kingdom
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Sweden, Switzerland, Ukraine, United Kingdom
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Bahamas, Canada, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Brazil, Colombia, Venezuela
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, Western Australia
New South Wales, New Zealand, Queensland, Victoria

Quartzite vs Migmatite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Quartzite and Migmatite Reserves. Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone. Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Quartzite vs Migmatite information and Quartzite vs Migmatite characteristics in the upcoming sections.

Quartzite vs Migmatite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Quartzite vs Migmatite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Quartzite and Properties of Migmatite. Learn more about Quartzite vs Migmatite in the next section. The interior uses of Quartzite include Countertops, Decorative aggregates, Flooring and Homes whereas the interior uses of Migmatite include Countertops, Flooring and Kitchens. Due to some exceptional properties of Quartzite and Migmatite, they have various applications in construction industry. The uses of Quartzite in construction industry include Arrowheads, As dimension stone, Cement manufacture, Construction aggregate, Cutting tool, For road aggregate, Making natural cement, Production of glass and ceramics, Rail track ballast, Roadstone and that of Migmatite include As dimension stone, Cement manufacture, For road aggregate, Making natural cement.

More about Quartzite and Migmatite

Here you can know more about Quartzite and Migmatite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Quartzite and Migmatite consists of mineral content and compound content. The mineral content of Quartzite includes Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz and mineral content of Migmatite includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon. You can also check out the list of all Metamorphic Rocks. When we have to compare Quartzite vs Migmatite, the texture, color and appearance plays an important role in determining the type of rock. Quartzite is available in black, blue, brown, green, light grey, purple, white, yellow colors whereas, Migmatite is available in black, bluish - grey, brown, brown- black, dark greenish - grey, dark grey to black colors. Appearance of Quartzite is Lustrous and that of Migmatite is Dull, Banded and Foilated. Properties of rock is another aspect for Quartzite vs Migmatite. The hardness of Quartzite is 6-7 and that of Migmatite is 5.5-6.5. The types of Quartzite are Not Available whereas types of Migmatite are Diatexites and Metatexites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Quartzite and Migmatite is white. The specific heat capacity of Quartzite is 0.75 kJ/Kg K and that of Migmatite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Quartzite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Migmatite is heat resistant, pressure resistant.

Let Others Know
×