Home
×

Dolomite
Dolomite

Ganister
Ganister



ADD
Compare
X
Dolomite
X
Ganister

Dolomite vs Ganister

Add ⊕
1 Definition
1.1 Definition
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.
1.2 History
1.2.1 Origin
Southern Alps, France
England
1.2.2 Discoverer
Dolomieu
Unknown
1.3 Etymology
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
From gan′is-ter i.e a hard, close-grained siliceous stone, often forming the stratum which underlies a coal-seam
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Clastic, Granular, Rough
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Beige, Black, Brown, Colourless, Cream, Dark Brown, Green, Grey, Light Green, Light to Dark Grey, Pink, Red, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Office Buildings
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
Cement Manufacture, Construction Aggregate, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
An Oil and Gas Reservoir, In aquifers, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones
4 Types
4.1 Types
Boninite and Jasperoid
Not Available
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Available in Lots of Colors and Patterns, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
Ganisters are formed by the destruction of easily weathered minerals mainly feldspar, within the surface horizon of soil by soil-forming processes.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Not Applicable
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
6-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Coarse or Fine
6.1.3 Fracture
Conchoidal
Splintery
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Vitreous and Pearly
Dull
6.1.7 Compressive Strength
Flint
140.00 N/mm2
Rank: 15 (Overall)
95.00 N/mm2
Rank: 20 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Perfect
6.1.9 Toughness
1
2.6
6.1.10 Specific Gravity
2.8-3
2.2-2.8
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.2-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
7.1.2 Africa
Morocco, Namibia
Namibia, Nigeria, South Africa
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
Canada, USA
7.2.2 South America
Brazil, Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
New South Wales, New Zealand

Dolomite vs Ganister Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Dolomite and Ganister Reserves. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Dolomite vs Ganister information and Dolomite vs Ganister characteristics in the upcoming sections.

Dolomite vs Ganister Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Dolomite vs Ganister characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Dolomite and Properties of Ganister. Learn more about Dolomite vs Ganister in the next section. The interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Ganister include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Dolomite and Ganister, they have various applications in construction industry. The uses of Dolomite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Ganister include Cement manufacture, Construction aggregate, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar.

More about Dolomite and Ganister

Here you can know more about Dolomite and Ganister. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Dolomite and Ganister consists of mineral content and compound content. The mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Ganister includes Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz. You can also check out the list of all Sedimentary Rocks. When we have to compare Dolomite vs Ganister, the texture, color and appearance plays an important role in determining the type of rock. Dolomite is available in black, brown, colourless, green, grey, pink, white colors whereas, Ganister is available in beige, black, brown, colourless, cream, dark brown, green, grey, light green, light to dark grey, pink, red, white, yellow colors. Appearance of Dolomite is Glassy or Pearly and that of Ganister is Rough. Properties of rock is another aspect for Dolomite vs Ganister. The hardness of Dolomite is 3.5-4 and that of Ganister is 6-7. The types of Dolomite are Boninite and Jasperoid whereas types of Ganister are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Dolomite and Ganister is white. The specific heat capacity of Dolomite is 0.92 kJ/Kg K and that of Ganister is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Dolomite is heat resistant, pressure resistant, wear resistant whereas Ganister is heat resistant, impact resistant, pressure resistant.

Let Others Know
×