Home
×

Basalt
Basalt

Theralite
Theralite



ADD
Compare
X
Basalt
X
Theralite

Basalt vs Theralite

Add ⊕
1 Definition
1.1 Definition
Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth
Theralite is a plutonic hylocrystalline igneous rock consisting of augite, olivine, calcic plagioclase and nepheline
1.2 History
1.2.1 Origin
Egypt
Unknown
1.2.2 Discoverer
Georgius Agricola
Unknown
1.3 Etymology
From Late Latin Basaltes (variant of basanites ), very hard stone, which was imported from Ancient Greek Basanites
From Greek to pursue
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
Phaneritic
2.2 Color
Black, Brown, Light to Dark Grey
Dark Grey to Black
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing, Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, As Dimension Stone, Cobblestones, Cutting Tool, Rail Track Ballast, Roadstone
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork, Used in aquariums
Cemetery Markers, Commemorative Tablets, Creating Artwork, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
Teschenite and Essexite
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Easter Island in the Polynesian Triangle, Pacific Ocean, Gateway of India in Mumbai, India, Gol Gumbaz in Karnataka, India
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Basalt forms when lava reaches the Earth's surface near an active volcano. The temperature of lava is between 1100 to 1250° C when it gets to the surface.
Theralite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Augite, Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Contact Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Available
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
7
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Uneven, Splintery or Conchoidal
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Not Available
Waxy and Dull
6.1.7 Compressive Strength
Flint
37.40 N/mm2
Rank: 28 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Non-Existent
6.1.9 Toughness
2.3
1.5
6.1.10 Specific Gravity
2.8-3
2.5-2.8
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.9-3.1 g/cm3
2.7 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
0.74 kJ/Kg K
Rank: 19 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
India, Russia
7.1.2 Africa
South Africa
South Africa
7.1.3 Europe
Iceland
Germany, Greece, Italy, Scotland, Turkey
7.1.4 Others
Not Yet Found
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil
Bolivia, Brazil, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Queensland

Basalt vs Theralite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Basalt and Theralite Reserves. Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth. Theralite is a plutonic hylocrystalline igneous rock consisting of augite, olivine, calcic plagioclase and nepheline. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Basalt vs Theralite information and Basalt vs Theralite characteristics in the upcoming sections.

Basalt vs Theralite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Basalt vs Theralite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Basalt and Properties of Theralite. Learn more about Basalt vs Theralite in the next section. The interior uses of Basalt include Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Theralite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Basalt and Theralite, they have various applications in construction industry. The uses of Basalt in construction industry include Arrowheads, As dimension stone, Cobblestones, Cutting tool, Rail track ballast, Roadstone and that of Theralite include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate.

More about Basalt and Theralite

Here you can know more about Basalt and Theralite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Basalt and Theralite consists of mineral content and compound content. The mineral content of Basalt includes Olivine, Plagioclase, Pyroxene and mineral content of Theralite includes Augite, Olivine, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Basalt vs Theralite, the texture, color and appearance plays an important role in determining the type of rock. Basalt is available in black, brown, light to dark grey colors whereas, Theralite is available in dark grey to black colors. Appearance of Basalt is Dull and Soft and that of Theralite is Veined and Shiny. Properties of rock is another aspect for Basalt vs Theralite. The hardness of Basalt is 6 and that of Theralite is 7. The types of Basalt are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite whereas types of Theralite are Teschenite and Essexite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Basalt is white to grey while that of Theralite is white. The specific heat capacity of Basalt is 0.84 kJ/Kg K and that of Theralite is 0.74 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Basalt is heat resistant, pressure resistant, wear resistant whereas Theralite is impact resistant, pressure resistant, wear resistant.

Let Others Know
×